Focusing of spherical Gaussian beams

Sidney A. Self

Simple procedures and formulas for tracing the characteristics of a spherical Gaussian beam through a train
of lenses or mirrors are described which are analogous to those used in geometrical optics to trace repeated

images through an optical train.

l. Introduction

In laboratory experiments with lasers, it is frequently
necessary to follow the properties of a Gaussian beam
after passage through a number of lenses. Often one
is required to design a lens system to create a beam waist
of specified diameter at a specified location, for exam-
ple, in laser anemometry.

Because on the laboratory scale one is often working
with a lens in the near field of the incident beam, the
behavior of the beam can be significantly different from
that which would be anticipated on the basis of geo-
metrical optics.

An extreme example of the difference in behavior
between Gaussian beams and conventional uniform
spherical waves from point sources occurs when the
waist of the incident beam is at the front focal plane of
a positive lens, in which case the emerging beam has a
waist at the back focal plane. This is inexplicable on
the basis of geometrical optics, which predicts that a
point object at the front focus yields a collimated beam
in the image space, i.e., the image is at infinity. Another
example, concerned with the focal shift, i.e., the dif-
ference between the position of the image waist for a
Gaussian beam from its geometrical optics position, is
discussed in a recent paper by Carter,! who works in
terms of the Fresnel number at the lens.

Siegman? discusses the properties of Gaussian beams
and treats the problem of following the transformation
of such a beam under the action of a train of lenses in a
general manner using matrix algebra.
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In this laboratory, a simple procedure for tracing the
characteristics of a Gaussian beam through a train of
lenses (or mirrors) was devised3 some years ago and has
proved useful. It generalizes the lens (or mirror) for-
mulas of geometrical optics by introducing an additional
parameter, the Rayleigh range of the beam which can
be simply recalculated for each step. Its main virtue
lies in the fact that the procedure is analogous to that
traditionally used for following repeated images through
an optical train on the basis of geometrical optics but
with modified formulas. The Rayleigh range, a prop-
erty of the beam incident on each lens, appears to be a
more convenient parameter than the Fresnel number
used by Carter.!

This paper describes the procedure and formulas
adopted and brings out the connection with geometrical
optics. The discussion is given in terms of lenses, but
with the appropriate sign convention, the results apply
equally well for mirrors.

L. Focusing Uniform Spherical Waves

The standard treatment? of thin lenses (or mirrors)
by geometrical optics neglects diffraction and deals with
point objects and images and uniform spherical waves
whose radii of curvature equal the distances from the
point object or image. ;

The change in wave-front radius of curvature intro-
duced by a lens of focal length f is just 1/f (with a suit-
able sign convention and assuming identical media on
either side). With the sign conventions of Ref. 4, the
standard thin lens or mirror formula is
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where s, s’ are the object and image distances, respec-
tively.
This can be written in dimensionless form
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and is illustrated in the Cartesian plot of Fig. 1.



In this form, the lens equation plots as a rectangular
hyperbola with asymptotes (s/f) = 1,(s’/f) = 1. Ray
diagrams representing the situations for branch (1) and
the segments (2) and (3) of the other branch of the hy-
perbola are shown for the cases of both positive (f > 0)
and negative (f < 0) lenses.

The magnification taken as positive,
Sl 1

I
is shown as a broken line in Fig. 1. Thus, Fig. 1 effec-
tively summarizes all the properties and uses of a simple
lens in image forming.
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. Properties of a Spherical Gaussian Beam

The TEMyy mode output of a laser is a spherical
Gaussian beam which has a waist, either real or, more
commonly, virtual (by projection backward inside the
laser), where the wave front is planar, and the beam
diameter is a minimum.

With respect to cylindrical coordinates with origin at
the waist (Fig. 2) and with Siegman’s? notation, the
intensity distribution normalized to unit total beam
power is

(3'/f),m
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Fig. 1. Cartesian plot of the lens formula of geometrical optics.

Solid lines show normalized image distance vs normalized object

distance. Broken lines show the magnification. Below are sketched

ray diagrams illustrating the situations for points on branch (1) and
on the segments (2) and (3) of the second branch.

Fig. 2. Geometry of a spherical Gaussian beam.

I(r,2) = (2/7w?) exp — 2(r/w)?, 3

where the beam radius w (to 1/e2 of the intensity on
axis) is

w(z) = woll + (z/25)%] V2. (4)
Here wy is the beam radius at the waist (z = 0), and -
2r = (mwd/\) . (5)

is the Rayleigh range characterizing the Lorentzian
profile of intensity along the axis.

The near and far fields are defined, respectively, by
z <zgpandz > zp.

The radius of curvature of the wave fronts is

R(z) = z[1 + (2r/2)2]. (6)

In the near field, for z << zp, R ~ 2}/2 — = forz — 0.
In the far field for z > zz, R ~ 2, and the waves ap-
proximate those from a point source centered at the
waist. It may be noted that the radius of curvature has
a minimum Ry, = 225 at 2 = 2.

In the far field the beam radius is

wrr — wo(2/2g) = Az/wwy. V)

Hence, in the far field the half-angle of d1vergence is

Orr = wrp/z = )\/7rw0 L (8)

It may be noted that wo and X determine all the ‘beam..

properties. More generally, two quantities, e.g., w(z1),
w(z2); R(z1), R(22); w(z1), R(z1) or w(z1), OFF, suffice
to determine the beam properties and waist position.
From the expressions quoted, the location and radius
of the beam waist can be calculated from any two such
quantities.

IV. Focusing Spherical Gaussian Beams

For comparison with the geometrical optics case in
calculating the focusing effect of a thin lens, we regard
the waist of the input beam as the object and the waist
of the output beam as the image. Either may be real or
virtual. Also, the ratio of the output/input waist di-
ameters is the magnification. The situation for a pos-
itive lens with real object and image beam waists is
shown in Fig. 3.

If the input beam waist radius wg and the object
distance s are specified, the Rayleigh range and the
beam’s radius w(s) and radius of curvature R (s) at the
lens can be calculated from Eqgs. (5), (4), and (6), re-
spectively.

For a thin lens, the beam radius is unchanged through
the lens, while the radius of curvature is changed by an
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Fig.3. Geometry of the imaging of a Gaussian beam by a lens shown
for the case of a positive lens and real object and image waists.
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Fig. 4. Cartesian plot of the lens formula for Gaussian beams

showing normalized image distance vs normalized object distance,

with normalized Rayleigh range of the input beam as the
parameter.

,amount"("i/f) as in the geometrical optics case. Thisis

“sufficient to determine the characteristics of the output

beam.
Applying the formulas (4)-(6) then yields the fol-
lowing lens formula for a Gaussian beam

1 1 1
AT S
In normalized form this becomes
! R S
/) + rINYGIF=1) (')
which may be compared with Eq. (1a). Regarding (s’/f)
as a function of (s/f), this can be written
{(s/)) —1] ’
[(s/f) = 1]2 + (zr/f)?
whereas the equivalent form of the usual lens formula
is

(9a)

(s'/H=1+ (9b)

PO S

G =1 ep =
It is clear that the appearance of the term (zz/f)2 in the
denominator of Eq. (9b) removes the pole at (s/f) =1

appearing in the usual lens formula (1b).

(1b)
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The lens formula for Gaussian beams is plotted in
normalized form in Fig. 4, with (2z/f) as parameter.
The limit (zg/f) — 0 corresponds to the geometrical
optics case.

It is particularly noteworthy that, for nonzero values
of (zg/f), all the curves have a single continuous branch
passing through the point (s/f) = (s’/f) = 1, where there
is a point of inflection. The asymptote at (s/f) = 1 has
been removed, which means that the image distance
cannot become infinite as in geometrical optics, when
the object lies at a focal point.

The common point (s/f) = (s’/f) = 1 represents the
fact noted earlier that, if the incident beam waist lies at
the front focus, the emerging beam has a waist at the
back focus. Moreover, this is independent of the ratio
(zgr/f). For a negative lens, the common point corre-
sponds to the incident beam having a virtual waist at the
back focus and the emerging beam having a virtual waist
at the front focus. Neither of these situations has a
counterpart in geometrical optics.

The maxima and minima of the curves are also of
interest. By differentiation we find

(s"/Pmax = 1 + Yolzr/f) at (s/f) = 1+ (2r/f);
(8'/Pmin = 1 = Yh(zr/f) at (s/f) =1 = (zr/f).

For the common case of a positive lens and real object
and image, Eq. (10a) says that the maximum image
distance is spax = f + f2/22g, and this occurs for an
object distance s = f + zp.

Unlike the case of geometrical objects, where for real
object and image there is a minimum object to image
distance s + s’ = 4f (when s = s’ = 2f, and the magnifi-
cation is unity), there is no corresponding minimum
separation between the waists of the input and output
beams for Gaussian beams.

The magnification is given by

(10a)
(10b)

wy _ 1

wo {1 = (/P2 + /NP2’
which reduces to the geometrical optics formula (2)
when z} < (s — )2 The presence of the term (zz/f)?
removes the pole in the magnification when s = f in Eq.
(2). For the latter condition, when the object waist is
at the front focus, the magnification has a maximum of
(f/zr); unity magnification only occurs when f = z for
this case.

The magnification as a function of (s/f) is graphed in
Fig. 5, with (zr/f) as parameter. The limit (zg/f) =0
corresponds to the geometrical optics case shown as a
broken line in Fig. 1.

The Rayleigh range of the output beam is given by

11)

(12)

Thus, from Eqgs. (9b), (11), and (12), all the properties
of the output beam, i.e., the normalized waist (image)
distance s’/f, the magnification m, and the Rayleigh
range zp, are calculable from the normalized object
distance (s/f) and the properties of the input beam
specified by the single parameter zz. For a given focal
length and object distance, Figs. 4 and 5 allow one to

2p = m2p.
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Fig. 5. Graph of magnification for a Gaussian beam vs normalized
object distance, with normalized Rayleigh range of the input beam
as the parameter.

quickly assess whether one is working near the geo-
metrical optics limit or if there are substantial correc-
tions due to working in the near field.

V. Discussion

Because Eq. (9) has been written in terms of the
Rayleigh range of the input beam, it is not symmetrical
with respect to input and output quantities, as is the
geometrical optics formula. However, the reciprocal
relation in terms of the Rayleigh range of the output
beam can be written

ot 1
s s'+zR¥ =0 f

(13)

This is useful for tracing backward to find the properties
of the input beam when those of the output beam are
known.

It may also be noted that Eq. (9) is used with the usual
sign convention for s, s/, and f and with the conventional
distinctions between real and virtual-objects and im-
ages.

Commonly, in tracing the beam through an optical
system or designing a lens system to create a beam with
required properties, one has to start with the properties
of the beam emitted by the laser. Thus, one needs to
know the effective waist position and Rayleigh range of
the laser beam.

If the output mirror is planar, one knows that the
waist is at the output mirror. Usually the manufacturer
specifies the output beam diameter and far-field di-
vergence angle, but it has been the author’s experience
that these are not always as stated or known accurately
enough to determine the Rayleigh range with sufficient
precision. Where possible, it is better to calculate the
theoretical waist position and diameter from the radii
of curvature and separation of the mirrors using the
cavity mode equations.2 When the output mirror is not
planar, allowance should be made for the lens effect of
the output mirror since it usually has a planar second
surface. This can be done using the method discussed
above to find the position of the virtual waist and the
Rayleigh range of the output beam.

Finally, it should be noted that, throughout this
paper, it has been assumed that the lens diameter is
sufficient to not significantly aperture the Gaussian
beam. If significant aperturing effect occurs, the image
position will not be as given above, and the waist will not
have a truly Gaussian profile. In the limit of a strong
aperturing effect, the beam at the lens will approach the
uniform spherical wave assumed in geometrical optics,
and the image waist will have the usual Airy diffraction
pattern and will occur at the geometrical optics image
position.
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