
Journal Pre-proofs

Golden Eagle Optimizer: A nature-inspired metaheuristic algorithm

Abdolkarim Mohammadi-Balani, Mahmoud Dehghan Nayeri, Adel Azar,
Mohammadreza Taghizadeh-Yazdi

PII: S0360-8352(20)30720-8
DOI: https://doi.org/10.1016/j.cie.2020.107050
Reference: CAIE 107050

To appear in: Computers & Industrial Engineering

Received Date: 10 August 2020
Revised Date: 1 December 2020
Accepted Date: 12 December 2020

Please cite this article as: Mohammadi-Balani, A., Dehghan Nayeri, M., Azar, A., Taghizadeh-Yazdi, M., Golden
Eagle Optimizer: A nature-inspired metaheuristic algorithm, Computers & Industrial Engineering (2020), doi:
https://doi.org/10.1016/j.cie.2020.107050

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cie.2020.107050
https://doi.org/10.1016/j.cie.2020.107050

[1]

Golden Eagle Optimizer: A nature-inspired metaheuristic algorithm

Abdolkarim Mohammadi-Balani

Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares

University, Tehran, Iran

E-mail: a_mohammadi@modares.ac.ir

ORCID: 0000-0001-7486-1346

Mahmoud Dehghan Nayeri1

Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares

University, Tehran, Iran

E-mail: mdnayeri@modares.ac.ir

ORCID: 0000-0002-7648-2937

Adel Azar

Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares

University, Tehran, Iran

E-mail: azara@modares.ac.ir

ORCID: 0000-0003-2123-7579

Mohammadreza Taghizadeh-Yazdi

Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran

E-mail: mrtaghizadeh@ut.ac.ir

ORCID: 0000-0002-9018-2703

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-

profit sectors.

1 Corresponding author (Mahmoud Dehghan Nayeri). Postal address: Department of Industrial Management,
Faculty of Management and Economics, Tarbiat Modares University, Adjacent Gisha Bridge, Jalal Al-
Ahmad Highway, Tehran, Iran. P.O. Box: 14115-111, Postal Code: 1411713116.

mailto:a_mohammadi@modares.ac.ir
mailto:mdnayeri@modares.ac.ir
mailto:azara@modares.ac.ir
https://orcid.org/0000-0003-2123-7579
mailto:mrtaghizadeh@ut.ac.ir

[2]

[3]

Golden Eagle Optimizer: A nature-inspired metaheuristic algorithm

Abstract

This paper proposes a nature-inspired swarm-based metaheuristic for solving global optimization problems

called Golden Eagle Optimizer (GEO). The core inspiration of GEO is the intelligence of golden eagles in

tuning speed at different stages of their spiral trajectory for hunting. They show more propensity to cruise

around and search for prey in the initial stages of hunting and more propensity to attack in the final stages. A

golden eagle adjusts these two components to catch the best possible prey in feasible region the shortest

possible time. This behavior is mathematically modeled to highlight exploration and exploitation for a

global optimization method. The performance of the proposed algorithm is tested and confirmed using 33

benchmark test functions and a scalability test. Results were compared to that of six other well-known

algorithms, which revealed GEO’s superiority, which indicates that it can find the global optimum and avoid

local optima effectively. The Multi-Objective Golden Eagle Optimizer (MOGEO) is also proposed to solve

multi-objective problems. The performance of MOGEO is also tested and verified on ten multi-objective

benchmark functions. Results were compared to that of two other multi-objective algorithms, which showed

that it can approximate true Pareto optimal solutions better than the other two algorithms. The software

(toolbox) and source code for GEO and MOGEO are also provided, which are publicly available.

Keywords

Golden Eagle Optimizer; Multi-Objective Golden Eagle Optimizer; Nature-inspired computing; Swarm

intelligence; Metaheuristic algorithm

[4]

 A new metaheuristic algorithm called Golden Eagle Optimizer (GEO) is proposed.

 Multi-Objective Golden Eagle Optimizer (MOGEO) is proposed for solving multi-objective

problems.

 Both algorithms are tested on several challenging benchmark optimization functions.

 GEO is also applied to constrained engineering design problems.

 The qualitative and quantitative results proved the efficiency of GEO and MOGEO.

[5]

Golden Eagle Optimizer: A nature-inspired metaheuristic algorithm

Abstract

This paper proposes a nature-inspired swarm-based metaheuristic algorithm for solving global optimization

problems called Golden Eagle Optimizer (GEO). The core inspiration of GEO is the intelligence of golden

eagles in tuning speed at different stages of their spiral trajectory for hunting. They show more propensity to

cruise around and search for prey in the initial stages of hunting and more propensity to attack in the final

stages. A golden eagle adjusts these two components to catch the best possible prey in the feasible region in

the shortest possible time. This behavior is mathematically modeled to highlight exploration and exploitation

for a global optimization method. The performance of the proposed algorithm is tested and confirmed using

33 benchmark test functions and a scalability test. Results were compared to that of six other well-known

algorithms, which revealed GEO’s superiority, and indicated that it can find the global optimum and avoid

local optima effectively. The Multi-Objective Golden Eagle Optimizer (MOGEO) is also proposed to solve

multi-objective problems. The performance of MOGEO is also tested and verified on two multi-objective

benchmark suites containing 17 problems. Results were compared to that of the four other multi-objective

metaheuristic algorithms, which showed that GEO can approximate true Pareto optimal solutions better than

the others. The software (toolbox) and source code for GEO and MOGEO are also provided, which are

publicly available.

Keywords

Golden Eagle Optimizer; Multi-Objective Golden Eagle Optimizer; Nature-inspired computing; Swarm

intelligence; Metaheuristic algorithm

[6]

1 Introduction

Optimization is the process of finding the state of decision/design variables that yields the best value for

single or multiple objective functions. Analytical methods were the dominant approach to solve

mathematical problems before the heuristic optimization era. In addition to the primary information on the

objective function value and constraint violation, analytical methods rely on the information about the

derivatives of the sole or constraint-penalized objective functions in the form of first- and second-order

derivatives. This extra information enables them to find the exact optimum for linear or convex non-linear

problems efficiently. However, this comes at the cost of vulnerability to local optima entrapment in more

complex problems–that has many local optima–and unavailability for problems with stochastic or unknown

search space [1]. The stochastic behavior and unknown search space are the prominent features of real-world

problems. This led to the advent of metaheuristic algorithms. The notable characteristics of metaheuristic

algorithms are that they are derivative-free and do not require limiting assumptions. Therefore, they can be

readily utilized for solving different classes of problems [2].

Such flexibility, however, is not costless. It has been observed, and later addressed as the No Free Lunch

(NFL) theorem [3], that the excellent performance of an optimization algorithm on a specific set of problems

does not guarantee the same performance on other problems. NFL provides an avenue for researchers to

develop novel metaheuristic algorithms. Relative simplicity in understanding and application, as well as

good performance, have resulted in the popularity of metaheuristic algorithms [4]. Numerous algorithms

have been introduced recently to solve business and engineering problems effectively.

Metaheuristic methods can be classified through various approaches. One common approach suggests

classifying these methods based on the source inspiration: (a) evolutionary, (b) human-based, (c) physics-

based, and (d), synthetic, and (e) swarm intelligence. Evolutionary algorithms are normally based on the

natural selection law of biology. These methods evolve the initial population using evolutionary operators to

improve the population’s fitness and find the global optimum [5,6]. Selection, crossover, and mutation are

the most common of such operators. Genetic Algorithm [7] and Differential Evolution [8] are two popular

evolutionary algorithms. The human-based approach encompasses any algorithm that is inspired specifically

by humans’ social behavior or concepts that have been developed by humans. Queuing Search Algorithm

(QSA) [9], Group Teaching Optimization Algorithm (GTOA) [10], and Teaching-Learning-Based

Optimization (TLBO) [11] are the examples of algorithms proposed in this area. Physics-based methods

tend to perceive the landscape as a physical phenomenon and move the search agents using formulae

borrowed from physical rules or theories. Some of the recent algorithms proposed under this approach are

Atom Search Optimization (ASO) [12], Henry Gas Solubility Optimization (HGSO) [13], Water Cycle

Algorithm (WCA) [14], Electron Radar Search Algorithm (ERSA) [15], Lightning Attachment Procedure

Optimization (LAPO) [16], Optics Inspired Optimization (OIO) [17], Gravitational Search Algorithm (GSA)

[18], Equilibrium Optimizer (EO) [19], Thermal Exchange Optimization (TEO) [20], Multi-Verse Optimizer

(MVO) [21], Electro-Search algorithm (ES) [22], and Colliding Bodies Optimization (CBO) [23]. Synthetic

methods are solely based on mathematical equations like trigonometry functions or well-known constants.

[7]

These algorithms are not inspired by a specific natural phenomenon. Sine Cosine Algorithm (SCA) [24],

Golden Ratio Optimization Method (GROM) [25], and Stochastic Fractal Search (SFS) [26] are among the

algorithms proposed within this approach. Algorithms belonging to the swarm intelligence approach imitate

the social behavior and communications within a group of species of animals, plants, or other living things

[27,28]. Searching for food, hunting, mating, and memorizing are the common social behaviors considered

in this class. Because communication is an indispensable element of social behavior, swarm intelligence

algorithms allow the search agents to enjoy the information produced by other search agents in the current

previous iteration [29]. This approach has gained increasing popularity in terms of both application and new

algorithm development. Some of the recently proposed algorithms that can be categorized under this

approach are Pathfinder algorithm (PFA) [30], Harris Hawks Optimization (HHO) [31], Squirrel Search

Algorithm (SSA) [32], Seagull Optimization Algorithm (SOA) [33], Sailfish Optimizer (SFO) [34], Black

Widow Optimization (BWO) [35], Emperor Penguin Optimizer (EPO) [36], Mouth Brooding Fish algorithm

(MBF) [37], Grasshopper Optimization Algorithm (GOA) [38], Spotted Hyena Optimizer (SHO) [39], and

Selfish Herd Optimizer (SHO) [40].

Metaheuristic methods can also be classified according to the number of search agents they use [41].

Individualist methods use only one search agent in each iteration, while population-based methods use

multiple search agents in each iteration. A population of search agents produces more information in each

iteration and can better explore the problem’s feasible region. However, this massively increases the number

of objective function evaluations, which can be problematic for computationally intensive objective

functions. Simulated annealing (SA) [42], Tabu Search (TS) [43], and hill-climbing [44] are among the well-

known individualist metaheuristics.

This paper proposes a novel swarm-intelligence metaheuristic algorithm and its multi-objective version

based on the golden eagles’ hunting process. They are called Golden Eagle Optimizer (GEO) and Multi-

Objective Golden Eagle Optimizer (MOGEO). GEO is founded on the intelligent adjustments on attack

propensity and cruise propensity that golden eagles perform while searching for prey and hunting. MOGEO

uses the same principles and is equipped with special tools to handle multi-objective problems. The

remaining parts of this paper are organized as follows. Section 2 provides the fundamental inspiration and

mathematical formulation of the GEO for single- and multi-objective problems. Section 3 presents the

experimental results of applying the proposed algorithm on different classes of single-objective benchmark

functions in addition to a convergence and scalability analysis. Section 4 presents the results of applying

MOGEO on the benchmark functions for multi-objective optimization. Section 5 explores the application for

real-world engineering optimization problems. The paper concludes in Section 6 by presenting final remarks

and suggestions for future studies.

2 Golden Eagle Optimizer (GEO)

 This section is dedicated to introducing in detail the proposed Golden Eagle Optimizer algorithm. First, the

inspiration for the algorithm is presented, then the mathematical model is discussed.

[8]

2.1 Inspiration

The golden eagle (Figure 1), scientifically known as Aquila chrysaetos, belongs to the Accipitridae family,

which covers different species of birds of prey like eagles and hawks [45]. With exceptional vision, high

speed, and powerful talons, golden eagles are professional hunters that can catch preys of a broad range of

sizes from insects to mid-sized mammals [46]. This bird can fly as fast as 190 km/h [45]. The golden eagle

is the most widely distributed member of the Accipitridae family. Despite many other types of eagles, it can

be found all over the Earth’s northern hemisphere [47].

Figure 1. Golden eagle [48]

Golden eagles have always had a close relationship with humans. They held lofty and sacred positions in the

beliefs since ancient and tribal humans and were considered a sign of positive events [49]. Even today, more

than ten countries have an eagle as the national emblem or on the national flag [50]. The tradition of hunting

with eagles is also practiced throughout Kyrgyzstan and Kazakhstan. The golden eagle is the main bird of

prey to be used there [51].

The unique feature of the golden eagle’s cruising and hunting is that it takes place in a spiral trajectory,

meaning that the prey is most of the time on one side of the eagle. This enables them to monitor the targeted

prey and the nearby boulders and bushes for finding a proper angle of attack. In the meantime, they also

survey other regions if they can find better food.

At each instance of the flight, the golden eagle’s behavior is driven by two forces: the propensity to attack,

and the propensity to cruise. Golden eagles know that if they attack hastily, they may catch small prey that

does not even compensate for the energy consumed for hunting. On the other hand, if they engage in an

endless search for bigger prey, they may run out of energy and catch nothing. Golden eagles intelligently

create a balance between these two desires to snatch the best prey they can in a reasonable time and with a

reasonable amount of energy. They switch from a low-attack-high-cruise profile to a high-attack-low-cruise

profile smoothly. Each golden eagle starts the hunt by flying at high altitudes within its realm in large circles

[9]

and searches for prey. Once prey is spotted, it starts moving on the perimeter of a hypothetical circle

centered at the prey. The golden eagle memorizes the location of the prey but continues to circle it. The

eagle gradually lowers its altitude and simultaneously gets closer to the prey, making the radius of the

hypothetical circle around the prey smaller and smaller. At the same time, it also surveys the nearby regions

for better alternatives. Sometimes golden eagles share the location of the best prey they found so far with

other eagles. If the eagle does not spot better location/prey, it continues to circle around the current one in

smaller circles and finally attacks the prey. Otherwise, if the eagle finds a better alternative, it flies on a new

circle around the new prey and forgets the previous one. It is noteworthy that the final attacks are performed

in a straight line.

With that said, the main characteristics of the hunting process of golden eagles can be summarized as

follows.

 They follow a spiral trajectory for search and a straight path for the attack,

 They show more propensity to cruise in initial stages of hunting and smoothly transition to more

propensity to attack in the final stages,

 They retain tendency for both cruise and attack in every moment of the flight,

 They look for other eagles’ information on prey.

Cruise, attack, and the intelligent balance that the golden eagle creates between these two are the natural

manifestation of exploration, exploitation, and the transition from the former to the latter. This paves the

way for devising a metaheuristic algorithm. The next subsection mathematically models this behavior.

2.2 Mathematical model and optimization algorithm

This subsection describes the proposed mathematical formulation to mimic the movements of golden eagles

that search for prey. The formulation for the spiral motion is presented, followed by its decomposition into

attack and cruise vectors to emphasize exploitation and exploration, respectively.

2.2.1 The spiral motion of golden eagles

GEO is based on the spiral motion of golden eagles. As mentioned earlier, each golden eagle memorizes the

best location it has visited so far. The eagle simultaneously has attraction toward attacking the prey and

toward cruise to search for better food. Attack and cruise vectors in 2D space can be visualized as in Figure

2.

[10]

Attack

Cruise

Figure 2. Spiral motion of golden eagles

In each iteration, each golden eagle randomly selects the prey of another golden eagle and circles around 𝑖 𝑓

the best location visited so far by golden eagle . The golden eagle can also choose to circle its own 𝑓 𝑖

memory; therefore, we have . 𝑓 ∈ {1,2,…,𝑃𝑜𝑝𝑆𝑖𝑧𝑒}

2.2.2 Prey selection

In each iteration, each golden eagle must choose a prey to perform the cruise and attack operations. In GEO,

the prey is modeled as the best solution found so far by the flock of golden eagles. Each golden eagle is

capable of memorizing the best solution it has found so far. In each iteration, each search agent selects a

target prey from the memory of the whole flock. Attack and cruise vectors for each golden eagle are then

calculated relative to the selected prey. If the new position (calculated via attack and cruise vectors) is better

than the previous position in the memory, then the memory is updated. The prey selection strategy plays an

important role in GEO. Selection can take place in a basic way, where each golden eagle only selects the

prey in its own memory. To make golden eagles better explore the landscape, we propose a random one-to-

one mapping scheme, where each golden eagle randomly selects its prey in the current iteration from the

memory of any other flock member. It is noteworthy that the selected prey is not necessarily the nearest or

farthest prey. In this scheme, each prey in the memory is assigned or mapped to one and only one golden

eagle. Then each golden eagle performs the attack and cruise operations on the selected prey. Figure 3

shows that each search agent can only attack one of the positions in the memory that belong to another

search agent.

[11]

𝑥� 𝑥� … 𝑥�

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋮ ⋮ ⋮ ⋮

⋅ ⋅ ⋅ ⋅

Memory of search agent 1

Memory of search agent 2

Memory of search agent 𝑝

Search agent 1

Search agent 2

Search agent 𝑝

Figure 3. One-to-one mapping in GEO prey selection

2.2.3 Attack (exploitation)

The attack can be modeled via a vector starting from the current position of the golden eagle and ending in

the location of the prey in the eagle’s memory. The attack vector for golden eagle can be calculated via 𝑖

Equation (1).

𝐴𝑖 = 𝑋 ∗
𝑓 ― 𝑋𝑖 (1)

Where is the attack vector of eagle , is the best location (prey) visited so far by eagle , and is the 𝐴𝑖 𝑖 𝑋 ∗
𝑓 𝑓 𝑋𝑖

current position of eagle . Since the attack vector guides the population of golden eagles toward the best-𝑖

visited locations, it highlights the exploitation phase in GEO.

2.2.4 Cruise (exploration)

The cruise vector is calculated based on the attack vector. The cruise vector is a tangent vector to the circle

and perpendicular to the attack vector. The cruise can also be thought of as the linear speed of the golden

eagle relative to the prey. The cruise vector in -dimensions is located inside the tangent hyperplane to the 𝑛

circle; thus, to calculate the cruise vector, we have to first calculate the equation of the tangent hyperplane.

The equation of a hyperplane in -dimensions can be determined by an arbitrary point from that hyperplane 𝑛

and a perpendicular vector to that hyperplane, which is called the normal vector of the hyperplane. Equation

(2) displays the scalar form of the hyperplane equation in -dimensional space. 𝑛

ℎ1𝑥1 + ℎ2𝑥2 + … + ℎ𝑛𝑥𝑛 = 𝑑⇒
𝑛

∑
𝑗 = 1

ℎ𝑗𝑥𝑗 = 𝑑 (2)

Where is the normal vector, is the variables vector, is 𝐻 = [ℎ1,ℎ2,…,ℎ𝑛] 𝑋 = [𝑥1,𝑥2,…,𝑥𝑛] 𝑃 = [𝑝1,𝑝2,…,𝑝𝑛]

the arbitrary point on the hyperplane, and . If we consider (the location of the eagle 𝑑 = 𝐻 ⋅ 𝑃 = ∑𝑛
𝑖 = 1ℎ𝑗𝑝𝑗 𝑋𝑖

) as the arbitrary point in the hyperplane and consider (the attack vector) as the normal of the hyperplane, 𝑖 𝐴𝑖

one can show the hyperplane to which (the cruise vector for the golden eagle in iteration) belongs 𝐶𝑡
𝑖 𝑖 𝑡

according to Equation (3).
𝑛

∑
𝑗 = 1

𝑎𝑗𝑥𝑗 =
𝑛

∑
𝑗 = 1

𝑎𝑡
𝑗𝑥 ∗

𝑗 (3)

[12]

Where is the attack vector, is the decision/design variables vector, and 𝐴𝑖 = [𝑎1,𝑎2,…,𝑎𝑛] 𝑋 = [𝑥1,𝑥2,…,𝑥𝑛]

 is the location of the selected prey. 𝑋 ∗ = [𝑥 ∗
1 ,𝑥 ∗

2 ,…𝑥 ∗
𝑛]

Now that the cruise hyperplane for eagle in iteration is calculated, it is time to find a cruise vector for this 𝑖 𝑡

golden eagle within this hyperplane. A golden eagle can choose any destination point on the cruise

hyperplane. To find a random vector on the cruise hyperplane, we have to first find a random destination

point on this hyperplane other than the one we already have (the current location of the golden eagle). 𝐶 𝑖

Note that the starting point of the cruise vector is the current location of the golden eagle . Since 𝑖

hyperplanes are one dimension smaller than their ambient space, we cannot simply generate a random 1 × 𝑛

point. A simple random point in -dimensional space is not guaranteed to be located on the cruise 𝑛

hyperplane. A new point located on the -dimensional cruise hyperplane has degrees of freedom, 𝑛 𝑛 ― 1

meaning that dimensions can be chosen freely, but the hyperplane equation dictates the last 𝑛 ― 1

dimension, as shown in Equation (2). The last dimension must be chosen so as it satisfies the hyperplane

equation; therefore, we have free variables and one fixed variable. We use the following procedure to 𝑛 ― 1

find a random -dimensional destination point located on the cruise hyperplane for golden eagle . 𝑛 𝐶 𝑖

Step 1. Randomly choose one variable out of variables as the fixed variable. We denote the index of the 𝑛

selected variable with . Note that the fixed variable cannot be chosen from the variables whose 𝑘

corresponding element in the attack vector is zero. The reason is that when the coefficient of a variable in 𝐴𝑖

Equation (2) is equal to zero, the hyperplane is parallel to the axis of that variable, and that variable can take

any value for a random combination of the other variables. For example, in the 3D plane 𝑛 ― 1 3𝑥1 +2𝑥2

, if we choose and choose random numbers for and , say , we cannot find a = 10 𝑘 = 3 𝑥1 𝑥2 {𝑥1 = 2,𝑥2 = 5}

unique point. Instead, an infinite number of point on this plane is obtained, and all of them satisfy the plane

equation . {[2,5,1],[2,5,2],[2,5,3],…}

Step 2. Assign random values to all the variables except the -th variable because the -th variable is fixed. 𝑘 𝑘

Step 3. Find the value of the fixed variable using Equation (4).

𝑐𝑘 =
𝑑 ― ∑

𝑗,𝑗 ≠ 𝑘𝑎𝑗

𝑎𝑘
(4)

Where is the -th element of the destination point , is the -th element of the attack vector , is the 𝑐𝑘 𝑘 𝐶 𝑎𝑗 𝑗 𝐴𝑖 𝑑

right-hand side of the Equation (2), is the -th element of the attack vector , and is the index of the 𝑎𝑡
𝑘 𝑘 𝐴𝑖 𝑘

fixed variable. The random destination point on the cruise hyperplane is found. Equation (5) displays the

general representation of the destination point on the cruise hyperplane.

𝐶𝑖 = (𝑐1 = random,𝑐2 = random,…,𝑐𝑘 =
𝑑 ― ∑

𝑗;𝑗 ≠ 𝑘𝑎𝑗

𝑎𝑘
,…,𝑐𝑛 = random) (5)

Now that the destination point is determined, the cruise vector can now be calculated for the golden eagle 𝑖

in iteration . The elements of the obtained destination point are random numbers between zero and one. It is 𝑡

[13]

noteworthy that the cruise vector attracts the population of golden eagles toward the areas other than the

ones in the memory; therefore, it emphasizes the exploration phase of GEO.

2.2.5 Moving to new positions

The displacement of the golden eagles comprises of attack and vector. We define the step vector for golden

eagle in iteration as Equation (6). 𝑖 𝑡

Δ𝑥𝑖 = 𝑟1𝑝𝑎
𝐴𝑖

‖𝐴𝑖‖
+ 𝑟2𝑝𝑐

𝐶𝑖

‖𝐶𝑖‖
(6)

Where is the attack coefficient in iteration and is the cruise coefficient in iteration and adjust how 𝑝𝑡
𝑎 𝑡 𝑝𝑡

𝑐 𝑡

golden eagles are affected by attack and cruise. and are random vectors whose elements lie in the 𝑟1 𝑟2

interval . and will be discussed later. and are the Euclidean norm of the attack and [0,1] 𝑝𝑎 𝑝𝑐 ‖𝐴𝑖‖ ‖𝐶𝑖‖
cruise vectors and are calculated using Equation (7).

, ‖𝐴𝑖‖ = ∑𝑛
𝑗 = 1𝑎2

𝑗 ‖𝐶𝑖‖ = ∑𝑛
𝑗 = 1𝑐2

𝑗 (7)

The position of the golden eagles in iteration is calculated simply by adding the step vector in iteration 𝑡 + 1

 to the positions in iteration . 𝑡 𝑡

𝑥𝑡 + 1 = 𝑥𝑡 + Δ𝑥𝑡
𝑖 (8)

If the fitness of the new position of the golden eagle is better than the position in its memory, the memory 𝑖

of this eagle is updated with the new position. Otherwise, the memory remains intact, but the eagle will

reside in the new position. In the new iteration, each golden eagle randomly chooses a golden eagle from the

population to circle around its best-visited location, calculates attack vector, calculates cruise vector, and

finally, the step vector and the new position for the next iteration. This loop is executed until any of the

termination criteria are satisfied.

We mentioned that there are two coefficients in Equation (6), namely attack coefficient and cruise 𝑝𝑡
𝑎

coefficient , that control how the step vector is affected by attack and cruise vectors. The next subsection 𝑝𝑡
𝑐

discusses how the values of these two coefficients are adjusted over the course of iterations.

2.2.6 Transition from exploration to exploitation

As mentioned earlier, golden eagles show a higher propensity to cruise in the initial stages of the hunting

flight and show a higher propensity to attack in the final stages, which correspond to more exploration in

initial iterations and more exploitation in the final iterations in the proposed optimizer. Figure 4 shows how

the attack and cruise change.

[14]

(a) (b) (c)

Attack

Cruise

𝑟1𝑝𝑎
𝐴𝑖

𝐴𝑖

𝑟2𝑝𝑐
𝐶𝑖

𝐶𝑖

Attack

Cruise

Attack

Cruise

Figure 4. Golden eagle’s transition from exploratory behavior (intense cruise) to exploitative behavior (intense attack)

GEO uses and to shift from exploration to exploitation. The algorithm starts with low and high . 𝑝𝑎 𝑝𝑐 𝑝𝑎 𝑝𝑐

As the iterations proceed, is gradually increased while is gradually decreased. The initial and final 𝑝𝑎 𝑝𝑐

values of both parameters are defined by the user. Intermediate values can be calculated using the linear

transition displayed in Equation (9).

{𝑝𝑎 = 𝑝0
𝑎 +

𝑡
𝑇|𝑝𝑇

𝑎 ― 𝑝0
𝑎|

𝑝𝑐 = 𝑝0
𝑐 ―

𝑡
𝑇|𝑝𝑇

𝑐 ― 𝑝0
𝑐|

(9)

Where indicates current iteration, indicates maximum iterations, and are the initial and final values 𝑡 𝑇 𝑝0
𝑎 𝑝𝑇

𝑎

for propensity to attack (), respectively, and and are the initial and final values for propensity to 𝑝𝑎 𝑝0
𝑐 𝑝𝑇

𝑐

cruise (), respectively. Our experiments, which will be discussed later, show that and 𝑝𝑐 [𝑝0
𝑎,𝑝𝑇

𝑎] = [0.5,2]

 seem to be suitable parameters. This means that is set to in the first iteration and [𝑝0
𝑐 ,𝑝𝑇

𝑐] = [1,0.5] 𝑝𝑎 0.5

linearly drops to reach in the last iteration. The same goes for where it starts with in the first iteration 2 𝑝𝐶 1

and is linearly lowered to reach in the last iteration. It worths noting here that Equation (9) linearly 0.5

changes the parameters. However, they can be changed logarithmically or by means of any other function.

Figure 5 shows how , , , and change over the course of iterations. Note that and are 𝑝𝑎 𝑟1 × 𝑝𝑎 𝑝𝑐 𝑟2 × 𝑝𝑐 𝑟1 𝑟2

random numbers in the interval in Equation (6). [0,1]

[15]

0 T/4 T/2 3T/4 T
Iterations

0

0.5

1

1.5

2

Pr
op

en
si

ty
 to

 a
tta

ck

pa

r1 pa

0 T/4 T/2 3T/4 T
Iterations

0

0.5

1

1.5

2
Pr

op
en

si
ty

 to
 c

ru
is

e
pc
r2 pc

Figure 5. and over the course of iterations𝑝𝑎 𝑝𝑐

The movement of search agents in 2D and 3D spaces is displayed in Figure 6 and Figure 7, respectively.

These figures show the position and step vector in different iterations, where is one of the initial iterations, 𝑡

 belongs to midway, and is one of the final iterations. In other words, . 𝑡 + Δ𝑡1 𝑡 + Δ𝑡2 𝑡 < 𝑡 + Δ𝑡1 < 𝑡 + Δ𝑡2

-100 0 100
-100

0

100

Step
Position
Optimum

-100 0 100
-100

0

100

Step
Position
Optimum

-100 0 100
-100

0

100

Step
Position
Optimum

Figure 6. Movement of search agents in 2D space

-100
100

0

100
0

100

0
-100 -100

Step
Position
Optimum

-100
100

0

100
0

100

0
-100 -100

Step
Position
Optimum

-100
100

0

100
0

100

0
-100 -100

Step
Position
Optimum

Figure 7. Movement of search agents in 3D space

[16]

To sum up this subsection, a visual summary of the main steps of GEO is illustrated in Figure 8. In each

iteration, each search agent first selects prey from the flock’s memory and constructs a hypothetical

hypersphere (Figure 8.a). Next, the search agents construct the attack vector, which is a vector from the

search agents to their selected prey (Figure 8.b). Then, each search agent constructs its cruise hyperplane,

which is basically the tangent hyperplane to the hypothetical sphere at the search agent’s position (Figure

8.c). Next, the cruise vector, which is a random vector inside the cruise hyperplane (Figure 8.d), is

constructed. Finally, attack and cruise vectors are combined to form the step vector (Figure 8.e).

1

(a)

0
-1

0

-0.5

0

0.5

0.5

1

1 -1

Prey
Search agent
Attack vector
Cruise Hyperplane
Cruise vector

1

(b)

0
-1

0

-0.5

0

0.5

0.5

1

-11

Prey
Search agent
Attack vector
Cruise Hyperplane
Cruise vector

1

(c)

0
-1

0

-0.5

0

0.5

0.5

1

-11

Prey
Search agent
Attack vector
Cruise Hyperplane
Cruise vector

1

(d)

0
-1

0

-0.5

0

0.5

0.5

1

-11

Prey
Search agent
Attack vector
Cruise Hyperplane
Cruise vector

1

(e)

0
-1

0

-0.5

0

0.5

0.5

1

-11

Prey
Search agent
Attack vector
Cruise Hyperplane
Cruise vector

1

(e)

0
-1

0

-0.5

0

0.5

0.5

1

-11

Prey
Search agent
Attack vector
Cruise Hyperplane
Cruise vector
Step vector

Figure 8. Main steps of GEO: (a) the search agent selects a prey from the flock’s memory, (b) attack vector is calculated, (c) cruise hyperplane is

constructed, (d) a random cruise vector is constructed inside the cruise hyperplane, and (e) step vector is constructed from attack and cruise

vectors

2.2.7 Single-objective Golden Eagle Optimizer (GEO)

According to the basic concepts and their corresponding mathematical modeling presented in Section 2.2,

the pseudo-code of the single-objective implementation of GEO is presented in Algorithm 1.

[17]

Algorithm 1. Pseudo-code of GEO

Initialize the population of golden eagles
Evaluate fitness function
Initialize population memory
Initialize and 𝑝𝑎 𝑝𝑐
for each iteration 𝑡

Update and (Equation (9))𝑝𝑎 𝑝𝑐
for each golden eagle 𝑖

Randomly select a prey from the population’s memory
Calculate attack vector (Equation (1)) 𝐴
if attack vector’s length is not equal to zero

Calculate cruise vector (Equations (2)-(5)) 𝐶
Calculate step vector (Equations (6)-(8)) Δ𝑥
Update position (Equation (8))
Evaluate fitness function for the new position
if fitness is better than the fitness of the position in eagle ’s memory 𝑖

Replace the new position with the position in eagle ’s memory 𝑖
end

end
end

end

2.2.8 Computational complexity of GEO

The computational complexity of the proposed GEO algorithm can be discussed for the two major parts of

the algorithm:

(a) Initialization. The algorithm requires time to initialize the position vector, the 𝒪(𝑛population × 𝑛dimensions)

step vector, and memory for the search agents.

(b) Main loop. The main loop requires time to select prey, calculate 𝒪(𝑛population × 𝑛dimensions × 𝑛iteration)

attack and cruise vectors, and update the position of the search agents.

It can be concluded that the total time complexity of GEO is . It is 𝒪(𝑛population × 𝑛dimensions × 𝑛iteration)

noteworthy that the space complexity of GEO is equal to since it is the space that 𝒪(𝑛population × 𝑛dimensions)

is occupied in the initialization and does not grow or shrink during iterations of the main loop.

2.3 Golden Eagle Optimizer for multi-objective problems

2.3.1 Multi-objective optimization

Multi-objective problems are relatively similar to single-objective problems in terms of problem definition.

The only difference is that, as their name suggests, they contain multiple objective functions instead of a

single objective function. This apparently negligible difference, however, creates challenges in terms of

optimization procedure that cannot be addressed by algorithms that are designed to deal with single-

objective optimization. That is where the need for optimization algorithms that can handle and solve multi-

objective problems emerges. A general multi-objective problem can be defined as Equation (10) [52].

[18]

Minimize 𝐹(𝑥) = {𝑓1(𝑥),𝑓2(𝑥),…,𝑓𝑘(𝑥)}

Subject to:
𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2,…,𝑟

ℎ𝑖(𝑥) = 0, 𝑖 = 𝑟 + 1,𝑟 + 2,…,𝑠

(10)

Where is the set of objectives to be optimized, is the vector of decision/design variables, is the -th 𝐹 𝑥 𝑔𝑖 𝑖

inequality constraint, is the -th equality constraint, is the number of inequality constraints, and is the ℎ𝑖 𝑖 𝑟 𝑠

total number of constraints.

In the single-objective optimization, the solution is better than if . However, in multi-𝑥1 𝑥2 𝑓(𝑥1) < 𝑓(𝑥2)

objective optimization, such a definition cannot be used. Instead, the Pareto dominance concept is

introduced to deal with multi-objective problems. It suggests that solution dominates (is better than) if 𝑥1 𝑥2

for all of the objective functions we have . The two solutions are called non-dominated if for 𝑓(𝑥1) < 𝑓(𝑥2)

at least one objective, but not all of them we have . If such a relation holds for a solution 𝑓(𝑥1) ≮ 𝑓(𝑥2)

compared to other solutions in the feasible region, that solution is called Pareto optimal. The ultimate goal in

multi-objective optimization is to find the Pareto optimal solutions [53]. In contrast to single-objective

problems, multi-objective problems do not have a single Pareto optimal solution. Instead, they have a set of

non-dominated solutions as the Pareto optimal solutions. So the ultimate goal in these problems is shifted

toward finding the Pareto optimal set of solutions, which is also called the Pareto front [54].

2.3.2 Multi-objective Golden Eagle Optimizer (MOGEO)

The proposed algorithm is able to find the best location of food using different operators. However, it is not

capable of finding the Pareto optimal solution to problems with multiple objectives. In particular, the

drawbacks of GEO for handling multi-objective problems are as follows:

 In GEO, each golden eagle has its own separate memory of the best prey visited by itself so far. This

means that GEO saves multiple individual best prey in each iteration. Saving multiple solutions are

useful for multi-objective problems, but the saved solutions must be non-dominated, which is not

guaranteed in GEO. Therefore, a mechanism should be introduced to only save the non-dominated

solutions so far.

 In the prey selection stage of GEO, each golden eagle chooses another golden eagle arbitrarily to

perform attack and cruise operators on its best prey stored in its memory. However, quality optimal

Pareto fronts contain members that are uniformly distributed along the front. This implies that a

criterion is needed so that golden eagles can prioritize some of the preys in the memory to the others

with that criterion.

 In the prey selection stage of GEO, a one-to-one mapping occurs between golden eagles and preys in

the memory. In other words, each prey in the memory is assigned to one and only one golden eagle.

However, the Pareto front in a given iteration might have more or fewer members than the

[19]

population size. Therefore, the one-to-one mapping between search agents and prey cannot be

implemented in multi-objective problems.

With that said, Multi-objective Golden Eagle Optimizer (MOGEO) is built upon the concepts of single-

objective optimization mentioned above plus three additional concepts: (a) external archive, (b) prey

prioritization criterion, and (c) multi-objective prey selection.

External-archive-based algorithms are popular yet robust approaches in multi-objective optimization. Some

well-known multi-objective algorithms like Multi-Objective Particle Swarm Optimization (MOPSO) [55] or

recent ones like Multi-Objective Grasshopper Optimization Algorithm (MOGOA) [56] or Multi-Objective

Ant Lion Optimizer (MOALO) [57] utilize an archive-based approach.

The basic idea is to keep promising non-dominated solutions in an external archive and update it as the

optimization algorithm proceeds. Search agents are steered toward the archive members and ultimately to

the region where the optimal Pareto front exists [58–60]. Since GEO uses a dedicated memory to keep

promising preys, the external archive approach can be easily implemented in GEO. The archive’s capacity is

limited. Therefore, a mechanism should be introduced for updating the external archive to keep the Pareto

optimal solutions visited so far and avoid violating the maximum capacity limit of the archive.

When each of the search agents moves to a new position, it may face one of the three following conditions.

If the new solution (position) is dominated by one or more of the current archive members, the new solution

is discarded. If the new solution is non-dominated to the current members of the archive and the archive is

not full, simply add the new position to the archive. If the new position is non-dominated compared to the

current members of the archive, randomly select one of the archive members and substitute it with the new

solution. One of the desirable characteristics of an ideal optimal Pareto front is the uniform dispersion of

archive members along the front in the objective space. Therefore, the outgoing member should be selected

from the dense regions of the archive in order to decrease the density in those regions [61,62]. Figure 9

shows an example of archive members located in the dense and sparse regions of the archive.

𝑓�

𝑓�

Worst candidate for
removal from archive

Best candidate for
removal from archive

Figure 9. Solutions located in the dense and sparse regions of the external archive

[20]

A measure is needed to determine the density of the nearby area for each member of the archive. We

propose the crowding score to be used as the density index in MOGEO. The crowding score is grounded on

the idea of crowding distance [63]. The crowding distance of a solution in the Pareto front is defined as the

distance between the two nearest solutions in its vicinity and can be calculated through Equation (11).

 𝐶𝑖 =
1
𝑛∑

𝑗 ∈ 𝐽

(𝑓𝑖 + 1,𝑗 ― 𝑓𝑖,𝑗) ― (𝑓𝑖,𝑗 ― 𝑓𝑖 ― 1,𝑗)

𝑓max
𝑗 ― 𝑓min

𝑗
(11)

Where , , are three consecutive members when the archive is sorted according to the 𝑓𝑖 ― 1,𝑗 𝑓𝑖,𝑗 𝑓𝑖 + 1,𝑗

objective values of the -th objective function. Figure 10 shows the crowding hypercube for solutions 𝑗

located in the sparse regions of the archive are assigned larger crowding scores, while solutions in the dense

regions have smaller crowding scores. It can be seen that the crowding distance is equal to half of the

crowding hypercube’s perimeter.

𝑓�

𝑓�

𝑓�
max𝑓�

�𝑓�
�𝑓�

min

𝑓�
min
𝑓�

�

𝑓�
�

𝑓�
max

Largest
crowding score

Smallest
crowding score

Figure 10. Crowding distance for members in dense and sparse regions of the external archive

The only exceptional cases are limiting members, i.e., the members with the largest or smallest value in any

of the objective functions. Regular members have two adjacent members, but limiting members have only

one. The crowding score for limiting members is calculated similarly to Equation (11) except that one of the

terms in the numerator is discarded.

[21]

Hypercube
for A’s

crowding
distance

Hypercube for B’s
crowding distance

𝑓�

𝑓�
Limiting members

of archive
A

B

Figure 11. Crowding score for limiting members of the archive

The crowding distance is calculated for all of the archive members. The outgoing member is selected using a

roulette wheel where the probabilities are proportional to crowding distances. We want to select the

outgoing member from the denser parts of the archive, so we should assign larger weights to the solutions in

denser regions. This can be easily achieved by subtracting the crowding scores from 1 since the crowding

distances calculated by Equation (11) fall in the interval . The new scores that are used for the roulette [0,1]

wheel procedure are called sparsity scores (), which can be calculated using Equation (12). 𝑆𝑖

 𝑆𝑖 = 1 ― 𝐶𝑖 (12)

The last important topic in MOGEO is the prey selection procedure. It is similar to the prey selection in

GEO but with some modifications. In GEO, every search agent has its own memory to keep the best location

visited so far. However, the memory in this sense cannot be used as the external archive in MOGEO because

the archive keeps only non-dominated locations visited so far. This point leads to conditions where the

number of archive members is less than, or in general, different from the population size. We propose the

MOGEO prey selection procedure to be based on the roulette wheel, where the weights are the sparsity

scores of the current archive members. This results in a higher probability of selection for members in the

sparse regions of the front and less probability for archive members in the dense regions. The crowding

scores are calculated according to Equation (11). The pseudocode of MOGEO is presented in Algorithm 2.

[22]

Algorithm 2. Pseudo-code of MOGEO

Initialize the population of golden eagles
Evaluate the fitness function
Initialize population memory
Initialize and 𝑝𝑎 𝑝𝑐
for each iteration 𝑡

Update and (Equation (9))𝑝𝑎 𝑝𝑐
Calculate crowding distance for existing archive members
for each golden eagle 𝑖

Randomly select prey from the archive using the roulette wheel
 weighted by crowding distances

Calculate attack vector (Equation (1)) 𝐴
if the attack vector’s length is not equal to zero

Calculate cruise vector (Equations (2)-(5)) 𝐶
Calculate step vector (Equations (6)-(8)) Δ𝑥
Update position (Equation (8))
Evaluate fitness functions for the new position
if the new position is non-dominated to the current archive members

if the external archive is not full
Add the new solution to the archive

else
Calculate the sparsity distances (Equations (11)-(12))
Select the outgoing archive member using

roulette wheel weighted by sparsity distances
Replace the outgoing solution with the new one

end
end

end
end

2.2.8 Computational complexity of MOGEO

The computational complexity of the proposed MOGEO algorithm can be discussed for the two major parts

of the algorithm:

(a) Initialization. The algorithm requires time to initialize the position vector, the 𝒪(𝑛population × 𝑛dimensions)

step vector, and memory for the search agents.

(b) Main loop. The main loop requires . 𝒪(𝑛population × 𝑛dimensions × 𝑛iteration × 𝑛objective × 𝑛archive)

It can be concluded that the total time complexity of MOGEO is 𝒪

. (𝑛population × 𝑛dimensions × 𝑛iteration × 𝑛objective × 𝑛archive)

2.4 Software (toolbox) and source code for GEO and MOGEO

To facilitate the implementation of GEO and MOGEO algorithms, separate open-source MATLAB

toolboxes are developed for GEO and MOGEO. The user interfaces are shown in Figure 12. Each toolbox is

divided into two columns. Problem definition and solver parameters are defined in the left column and the

algorithm’s progress, and the final results are shown in the right column. By pressing the “Solve” button, the

solver starts to optimize the problem. Both solvers show graphical and textual feedback about the solver’s

[23]

status in each iteration. GEO toolbox plots the mean fitness for each iteration as well as the best solution

found so far. MOGEO toolbox plots the archive members’ fitness values in each iteration. The toolboxes are

able to evaluate the fitness function in a vectorized fashion, which is suitable for speeding up the

optimization process. Both toolboxes allow the user to halt the solver anywhere in the middle of

optimization. The results, whether the algorithm obtained or the user decided to halt, can be easily exported

to the base workspace for post-optimization analysis. The plot can also be exported to many types of lossy

and vector graphic formats. In addition, the source code for both GEO and MOGEO is also publicly

available. Toolboxes and the source codes can be downloaded from

https://www.mathworks.com/matlabcentral/profile/authors/14675656.

(a) (b)

Figure 12. The user interface of GEO (a) and MOGEO (b) toolboxes (can be downloaded from

https://www.mathworks.com/matlabcentral/profile/authors/14675656).

3 Single-objective optimization results for GEO

To verify the performance of the proposed algorithm, GEO is tested on 33 well-known benchmark

problems. This section presents the results of these tests. The challenging benchmark problems in each class

analyze different aspects of the proposed algorithm. First, an overview of the experimental setup and

compared algorithms are presented. Then, the details of the utilized benchmark functions of unimodal,

multimodal, composite classes are presented. Next, the scalability analysis will be conducted to examine the

performance of GEO in large problems.

3.1 Parameter setting

Before applying the proposed algorithm to the test functions, the parameters of GEO must be fine-tuned.

The four parameters are initial attack propensity (), final attack propensity (), initial cruise propensity (𝑝0
𝑎 𝑝𝑇

𝑎

), and the final cruise propensity (). GEO is applied to 15 of the test functions mentioned above, and the 𝑝0
𝑐 𝑝𝑇

𝑐

results are normalized and aggregated to construct a total measure to determine the best set of parameters.

https://www.mathworks.com/matlabcentral/profile/authors/14675656
https://www.mathworks.com/matlabcentral/profile/authors/14675656

[24]

The values for the attack propensity are chosen from the set , and the values for the cruise {0,0.5,1,1.5,2}

propensity are chosen from the set . Every possible pair of attack propensity values that {0,0.25,0.5,0.75,1}

are non-decreasing are chosen. A similar approach was used to choose the values for the cruise propensity,

except that the values must be non-increasing. A total of 225 parameter sets are obtained for the analysis.

Each parameter set was used to run GEO 30 times on each problem. Figure 13 displays the aggregate

objective function values for the top 40 parameters set. It can be concluded that the best values for initial and

final attack propensity are , and the best values for the initial and final cruise [𝑝0
𝑎 ― 𝑝𝑇

𝑎] = [0.5 ― 2]

propensity are . Therefor, all of the experiments in this paper are performed using this [𝑝0
𝑐 ― 𝑝𝑇

𝑐] = [1 ― 0.5]

set of parameters.

[0
.5

0–
2.

00
; 1

.0
0–

0.
50

]
[0

.0
0–

2.
00

; 1
.0

0–
0.

50
]

[1
.5

0–
1.

50
; 0

.7
5–

0.
50

]
[1

.0
0–

2.
00

; 1
.0

0–
0.

50
]

[1
.5

0–
1.

50
; 1

.0
0–

0.
50

]
[1

.5
0–

2.
00

; 0
.7

5–
0.

50
]

[1
.5

0–
1.

50
; 0

.7
5–

0.
75

]
[1

.0
0–

1.
50

; 1
.0

0–
0.

75
]

[2
.0

0–
2.

00
; 0

.5
0–

0.
50

]
[1

.0
0–

2.
00

; 1
.0

0–
0.

25
]

[1
.0

0–
1.

50
; 1

.0
0–

0.
50

]
[0

.5
0–

2.
00

; 1
.0

0–
0.

25
]

[1
.5

0–
2.

00
; 0

.7
5–

0.
25

]
[1

.5
0–

2.
00

; 1
.0

0–
0.

25
]

[0
.5

0–
2.

00
; 0

.7
5–

0.
75

]
[1

.0
0–

2.
00

; 0
.7

5–
0.

50
]

[1
.0

0–
1.

50
; 0

.7
5–

0.
75

]
[0

.5
0–

1.
50

; 1
.0

0–
0.

75
]

[2
.0

0–
2.

00
; 0

.5
0–

0.
25

]
[1

.5
0–

2.
00

; 1
.0

0–
0.

00
]

[1
.0

0–
2.

00
; 0

.7
5–

0.
75

]
[2

.0
0–

2.
00

; 0
.7

5–
0.

25
]

[0
.5

0–
1.

50
; 1

.0
0–

0.
50

]
[1

.5
0–

1.
50

; 0
.7

5–
0.

25
]

[1
.5

0–
1.

50
; 1

.0
0–

0.
25

]
[0

.0
0–

2.
00

; 0
.7

5–
0.

75
]

[1
.0

0–
1.

50
; 1

.0
0–

0.
25

]
[1

.0
0–

2.
00

; 1
.0

0–
0.

00
]

[1
.5

0–
2.

00
; 0

.7
5–

0.
00

]
[1

.5
0–

2.
00

; 1
.0

0–
0.

50
]

[1
.5

0–
1.

50
; 1

.0
0–

0.
00

]
[1

.0
0–

1.
50

; 0
.7

5–
0.

50
]

[2
.0

0–
2.

00
; 1

.0
0–

0.
00

]
[1

.5
0–

2.
00

; 0
.5

0–
0.

25
]

[1
.5

0–
2.

00
; 0

.5
0–

0.
50

]
[2

.0
0–

2.
00

; 0
.7

5–
0.

50
]

[2
.0

0–
2.

00
; 1

.0
0–

0.
25

]
[1

.0
0–

2.
00

; 0
.7

5–
0.

25
]

[1
.5

0–
1.

50
; 0

.5
0–

0.
50

]
[2

.0
0–

2.
00

; 0
.7

5–
0.

00
]

Parameter sets

0.027
0.028
0.029

0.03
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038

Ag
gr

eg
at

e
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e

Figure 13. Aggregate results for 20 of the best parameter sets for the GEO algorithm

3.2 Experimental setup and compared algorithms

In order to verify the capabilities of GEO, its performance is compared to those of other well-known

algorithms in the literature, namely, Grey Wolf Optimizer (GWO) [64], Genetic Algorithm (GA) [7], Crow

Search Algorithm (CSA) [65], Particle Swarm Optimization (PSO) [66], Harmony Search (HS) [67], and

Dragonfly Algorithm (DA) [68]. All of the algorithms were coded in MATLAB 9.6 (R2019a). To keep the

comparisons fair and consistent, we used general and solver-specific parameters as reported in Table 1.

Metaheuristic algorithms use random initial generation and random numbers in the intermediate

calculations, which may affect the quality of the solutions. Each algorithm is implemented multiple times on

each benchmark problem, so as to avoid these effects. As depicted in Table 1, we used 30 independent

replications for all of the problems and solvers.

[25]

Table 1. Parameter settings for compared algorithms

Algorithm Parameter Value
All algorithms Population size 50

Maximum iterations 1000
Number of replications 30

GEO : Propensity to attack 𝑝𝑎 [0.5 ― 2]
: Propensity to cruise𝑝𝑐 [1 ― 0.5]

GWO : Control parameter 𝐶 [2 ― 0]
Number of leaders 3

GA Elite fraction 0.05
Selection method Binary tournament
Crossover method Linear
Crossover fraction 0.8
Mutation method Gaussian

CSA : Flight length 𝑓𝑙 2
: Awareness probability 𝐴𝑃 0.1

PSO Neighboring ratio 0.25
: Inertia weight 𝑤 0.8

: Acceleration weights𝑐1,𝑐2 1.5
HS Memory considering rate 0.95

Pitch adjustment ratio 0.1
DA : Base coefficient 𝑏 [0.1 ― 0]

: Neighborhood radius 𝑟 [0.25 ― 2.25] × [𝑢𝑏 ― 𝑙𝑏]
: Separation coefficient 𝑠 2𝑏
: Alignment coefficient 𝑎 2𝑏
: Cohesion coefficient 𝑐 2𝑏
: Food attraction coefficient 𝑓 2
: Enemy distraction coefficient 𝑒 𝑏

3.3 Benchmark functions

In order to numerically prove the theoretical claims mentioned in the previous sections and to test the

performance of the proposed algorithm, a wide range of experiments are conducted. The benchmark

functions can be grouped into three classes. Unimodal benchmark functions have only one optimum and are

suitable for testing the exploitation ability of optimization algorithms. Table 2 shows the seven fixed-

dimension and scalable unimodal benchmark functions used in this study (to). Multimodal benchmark 𝐹1 𝐹7

functions have many local optima that can trap the algorithms; therefore, they can test the exploration ability

of algorithms. Table 3 displays the 16 fixed-dimension and scalable multimodal benchmark functions on

which GEO is tested (to). The last class is the composite functions that are more challenging than the 𝐹8 𝐹23

previous two classes. Composite functions can aptly represent the landscapes that metaheuristic algorithms

may face in real-world mathematical problems. Composite functions are basically the shifted, rotated,

biased, and hybridized version of the well-known unimodal and multimodal functions. The ten composite

benchmark functions introduced in the CEC2017 competition are utilized in this study, the details of which

are reported in Table 4 (to). Further details of CEC2017 composition functions can be found at [69].𝐹24 𝐹33

[26]

Table 2. Unimodal benchmark functions

Name Equation 𝐷 Bounds 𝑓 ∗

Beale
𝑓1(𝑥) = (1.5 ― 𝑥1 ― 𝑥1𝑥2)2 + (2.25 ― 𝑥1 + 𝑥1𝑥2

2)2 +
 (2.625 ― 𝑥1 + 𝑥1𝑥3

2)2 2 [―4.5,4.5]𝐷 0

Matyas 𝐹2(𝑥) = 0.26(𝑥2
1 + 𝑥2

2) ―0.48𝑥1𝑥2 2 [―10,10]𝐷 0
Three-hump
camel 𝐹3(𝑥) = 2𝑥2

1 ―1.05𝑥4
1 +

𝑥1

6 + 𝑥1𝑥2 + 𝑥2
2 2 [―5,5]𝐷 0

Exponential 𝐹4(𝑥) = ― 𝑒(―0.5∑𝑛
𝑖 = 1𝑥2

𝑖) 30 [―1,1]𝐷 0

Ridge 𝐹5(𝑥) = 𝑥1 +2(∑𝑛
𝑖 = 2𝑥2

𝑖)0.1
30 [―5,5]𝐷 −5

Sphere 𝐹6(𝑥) = ∑𝑛
𝑖 = 1𝑥2

𝑖 30 [―100,100]𝐷 0

Step 𝐹7(𝑥) = ∑𝑛
𝑖 = 1(𝑥𝑖 + 0.5)2 30 [―5.12,5.12]𝐷 0

Table 3. Multimodal benchmark functions

Name Equation 𝐷 Bounds 𝑓 ∗

Drop wave 𝐹8(𝑥) = ―
1 + cos (12 𝑥2

1 + 𝑥2
2)

0.5(𝑥2
1 + 𝑥2

2) + 2
2 [―5.2,5.2]𝐷 −1

Egg holder 𝐹9(𝑥) = ― (𝑥2 + 47)sin (|𝑥2 +
𝑥1

2 + 47|) ― 𝑥1sin (|𝑥1 ― 𝑥2 ― 47|) 2 [―512,512]𝐷 −959.6407

Himmelblau 𝐹10(𝑥) = (𝑥2
1 + 𝑥2 ― 11)2 + (𝑥1 + 𝑥2

2 ― 7)2 2 [―5,5]𝐷 0

Levi 13
𝐹11(𝑥) = sin2 (3𝜋𝑥1) + (𝑥 ― 1)2(1 + sin2 (3𝜋𝑥2)) + (𝑥2 ― 1)2

 (1 + sin2 (2𝜋𝑥2)) 2 [―10,10]𝐷 0

Ackley 1 𝐹12(𝑥) = ―20𝑒
(―0.2

1
𝑛∑𝑛

𝑖 = 1𝑥2
𝑖)

― 𝑒(1
𝑛∑𝑛

𝑖 = 1cos (2𝜋𝑥𝑖)) +20 + 𝑒 30 [―32,32]𝐷 0

Griewank 𝐹13(𝑥) = 1 + ∑𝑛
𝑖 = 1

𝑥2
𝑖

4000 ― ∏𝑛
𝑖 = 1cos (𝑥𝑖

𝑖) 30 [―600,600]𝐷 0

Happy cat 𝐹14(𝑥) = 8 (‖𝐱‖2 ― 𝑛)2 +
1
𝑛(1

2‖𝐱‖2 + ∑𝑛
𝑖 = 1𝑥𝑖) +

1
2 30 [―2,2]𝐷 0

Michalewicz 𝐹15(𝑥) = ― ∑𝑛
𝑖 = 1sin (𝑥𝑖)(sin (𝑖𝑥2

𝑖

𝜋))20
10 [0,𝜋]𝐷 −9.6602

Penalized 1

𝐹16(𝑥) =
𝜋
𝑛

[10sin2 (𝜋𝑦1) + ∑𝑛 ― 1
𝑖 = 1 ((𝑦𝑖 ― 1)2(1 + 10sin2 (𝜋𝑦𝑖 + 1))) + (𝑦𝑛 ― 1)2]

 + ∑𝑛
𝑖 = 1𝑢(𝑥𝑖,10,100,4)

 𝑦𝑖 = 1 +
1
4(𝑥𝑖 + 1)

 𝑢(𝑥𝑖,𝑎,𝑘,𝑚) = {𝑘(𝑥𝑖 ― 𝑎)𝑚 𝑥𝑖 > 𝑎
0 ―𝑎 ≤ 𝑥𝑖 ≤ 𝑎
𝑘(― 𝑥𝑖 ― 𝑎)𝑚 𝑥𝑖 < 𝑎

30 [―50,50]𝐷 0

Penalized 2

𝐹17(𝑥) = 0.1
[sin2 (3𝜋𝑥1) + ∑𝑛 ― 1

𝑖 = 1 ((𝑥𝑖 ― 1)2(1 + sin2 (3𝜋𝑥𝑖 + 1))) + (𝑥𝑛 ― 1)2(1 + sin2 (2𝜋𝑥𝑛))]
 + ∑𝑛

𝑖 = 1𝑢(𝑥𝑖,5,100,4)
30 [―50,50]𝐷 0

Periodic 𝐹18(𝑥) = 1 + ∑𝑛
𝑖 = 1sin2 (𝑥𝑖) ―0.1𝑒(∑𝑛

𝑖 = 1𝑥2
𝑖) 30 [―50,50]𝐷 0.9

Qing 𝐹19(𝑥) = ∑𝑛
𝑖 = 1(𝑥2

𝑖 ― 𝑖)2 30 [―500,500]𝐷 0

Rastrigin 𝐹20(𝑥) = 10𝑛 + ∑𝑛
𝑖 = 1(𝑥2

𝑖 ― 10cos (2𝜋𝑥𝑖)) 30 [―5.12,5.12]𝐷 0

Rosenbrock 𝐹21(𝑥) = ∑𝑛
𝑖 = 1(100(𝑥𝑖 + 1 ― 𝑥2

𝑖)2 + (1 ― 𝑥𝑖)2) 30 [―5,10]𝐷 0

Salomon 𝐹22(𝑥) = 1 ― cos (2𝜋 ∑𝑛
𝑖 = 1𝑥2

𝑖) + 0.1 ∑𝑛
𝑖 = 1𝑥2

𝑖 30 [―100,100]𝐷 0

Yang 4 𝐹23(𝑥) = (∑𝑛
𝑖 = 1sin2 (𝑥𝑖))𝑒(― ∑𝑛

𝑖 = 1sin2 |𝑥𝑖|) 30 [―10,10]𝐷 −1

[27]

Table 4. Composite benchmark functions of CEC2017 competition

Equation 𝐷 Bounds 𝑓 ∗

CF1

𝐹24(𝑥) = {𝑓1: Shifted and rotated Rosenbrock's function
𝑓2: Shifted and rotated High Conditioned Elliptic function
𝑓3: Shifted and rotated Rastrigin's function

 𝜎 = [10,20,30]
 𝜆 = [1,10 ―6,1]

 𝑏𝑖𝑎𝑠 = [0,100,200]

30 [―100,100]𝐷 2100

CF2

𝐹25(𝑥) = {𝑓1: Shifted and rotated Rastrigin's function
𝑓2: Shifted and rotated Griewank's function
𝑓3: Shifted and rotated Modified Schwefel's function

 𝜎 = [10,20,30]
 𝜆 = [1,10,1]

 𝑏𝑖𝑎𝑠 = [0,100,200]

30 [―100,100]𝐷 2200

CF3

 𝐹26(𝑥) = {𝑓1: Shifted and rotated Rosenbrock's function
𝑓2: Shifted and rotated Ackley's function
𝑓3: Shifted and rotated Modified Schwefel's function
𝑓4: Shifted and rotated Rastrigin's function

 𝜎 = [10,20,30,40]
 𝜆 = [1,10,1,1]

 𝑏𝑖𝑎𝑠 = [0,100,200,300]

30 [―100,100]𝐷 2300

CF4

 𝐹27(𝑥) = {𝑓1: Shifted and rotated Ackley'sfunction
𝑓2: Shifted and rotated High Conditioned Elliptic function
𝑓3: Shifted and rotated Girewank's function
𝑓4: Shifted and rotated Rastrigin's function

 𝜎 = [10,20,30,40]
 𝜆 = [1,10 ―6,10,1]

 𝑏𝑖𝑎𝑠 = [0,100,200,300]

30 [―100,100]𝐷 2400

CF5

 𝐹28(𝑥) = {𝑓1: Shifted and rotated Rastrigin's function
𝑓2: Shifted and rotated Happy Cat function
𝑓3: Shifted and rotated Ackley's function
𝑓4: Shifted and rotated Discus function
𝑓5: Shifted and rotated Rosenbrock's function

 𝜎 = [10,20,30,40,50]
 𝜆 = [10,1,10,10 ―6,1]

 𝑏𝑖𝑎𝑠 = [0,100,200,300,400]

30 [―100,100]𝐷 2500

CF6

 𝐹29(𝑥) = {𝑓1: Shifted and rotated Expanded Schaffer's function
𝑓2: Shifted and rotated Modified Schwefel's function
𝑓3: Shifted and rotated Griewank's function
𝑓4: Shifted and rotated Rosenbrock's function
𝑓5: Shifted and rotated Rastrigin's function

 𝜎 = [10,20,20,30,40]
 𝜆 = [10 ―26,10,10 ―6,10,5 × 10 ―4]

 𝑏𝑖𝑎𝑠 = [0,100,200,300,400]

30 [―100,100]𝐷 2600

CF7

 𝐹30(𝑥) = {𝑓1: Shifted and rotated HGBat function
𝑓2: Shifted and rotated Rastrigin’s function
𝑓3: Shifted and rotated Modified Schwefel's function
𝑓4: Shifted and rotated Bent - Cigar function
𝑓5: Shifted and rotated High Conditioned Elliptic function
𝑓6: Shifted and rotated Expanded Schaffer's function

 𝜎 = [10,20,30,40,50,60]
 𝜆 = [10,10,2.5,10 ―26,10 ―6,5 × 10 ―4]

 𝑏𝑖𝑎𝑠 = [0,100,200,300,400,500]

30 [―100,100]𝐷 2700

CF8

 𝐹31(𝑥) = {𝑓1: Shifted and rotated Ackley's function
𝑓2: Shifted and rotated Griewank's function
𝑓3: Shifted and rotated Discus function
𝑓4: Shifted and rotated Rosenbrock's function
𝑓5: Shifted and rotated Happy Cat function
𝑓6: Shifted and rotated Expanded Schaffer's function

 𝜎 = [10,20,30,40,50,60]
 𝜆 = [10,10,10 ―6,1,1,5 × 10 ―4]

 𝑏𝑖𝑎𝑠 = [0,100,200,300,400,500]

30 [―100,100]𝐷 2800

CF9

 𝐹32(𝑥) = {𝑓1: Hybrid function 5 in CEC2017 competition
𝑓2: Hybrid function 8 in CEC2017 competition
𝑓3: Hybrid function 9 in CEC2017 competition

 𝜎 = [10,30,50]
 𝜆 = [1,1,1]

 𝑏𝑖𝑎𝑠 = [0,100,200]

30 [―100,100]𝐷 2900

CF10

 𝐹33(𝑥) = {𝑓1: Hybrid function 5 in CEC2017 competition
𝑓2: Hybrid function 6 in CEC2017 competition
𝑓3: Hybrid function 7 in CEC2017 competition

 𝜎 = [10,30,50]
 𝜆 = [1,1,1]

 𝑏𝑖𝑎𝑠 = [0,100,200]

30 [―100,100]𝐷 3000

[28]

[29]

3.4 Qualitative results

This section explores a set of qualitative measures for the performance of GEO. Qualitative measures are

commonly reported for new algorithms. The most important qualitative measures of single-objective

optimization for GEO are presented in Figure 14. It is noteworthy that this figure contains the qualitative

measures for two unimodal functions, two multimodal functions, and three composite functions. The first

column shows the landscape of the benchmark function. The second column displays the search history,

which is basically the points that have been visited by all of GEO search agents to find the optimum. It is

evident that GEO can search the entire landscape, but it puts more emphasis on exploring promising areas.

The third column shows the trajectory of the first search agent along the axis (first decision variable). 𝑥1

Plots in this column show that the search agents undergo drastic changes in their position in initial iterations

of the optimization process while reducing the changes in later iterations to slow down and converge to the

optimum. This behavior can guarantee the convergence of GEO [70]. The fourth column displays the mean

fitness of the population over the course of iterations. It can be seen that the large values of the mean fitness

and its rapid changes in initial iterations, followed by a reduction in value and diminishing changes implies

the transition from high exploration in initial iterations toward high exploitation during the final iterations.

This corresponds to the transition of golden eagles from intense cruise to intense attack. The last column

depicts the convergence curve for the selected benchmark functions, which is the best position visited by

GEO over the course of iterations. It shows how well GEO improves the fitness to finally converge toward

the optimum. It is seen that in unimodal functions, the convergence curve is continuously improving.

However, this might not be the case for multimodal and composite functions, where GEO is exposed to

many local minima and may not visit better positions for some iterations.

[30]

-4 -2 0 2 4

-4

-2

0

2

4

Search history

0 200 400 600 800 1000

-1

0

1

2

3

4

Trajectory

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000
Mean fitness

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8
Convergence curve

-100 -50 0 50 100
-100

-50

0

50

100
Search history

0 200 400 600 800 1000

-50

0

50

Trajectory

0 200 400 600 800 1000

10-100

10-50

100
Mean fitness

0 200 400 600 800 1000

10-100

10-50

100
Convergence curve

-500 0 500
-500

0

500
Search history

0 200 400 600 800 1000

-400

-200

0

200

400

Trajectory

0 200 400 600 800 1000

-800

-600

-400

-200

0

Mean fitness

0 200 400 600 800 1000
-950

-900

-850

-800

-750

-700

Convergence curve

-10 -5 0 5 10
-10

-5

0

5

10
Search history

0 200 400 600 800 1000

-5

0

5

10
Trajectory

0 200 400 600 800 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Mean fitness

0 200 400 600 800 1000
-1

-0.8

-0.6

-0.4

-0.2

0
Convergence curve

-100 -50 0 50 100
-100

-50

0

50

100
Search history

0 200 400 600 800 1000
-100

-50

0

50

Trajectory

0 200 400 600 800 1000
2200

2400

2600

2800

Mean fitness

0 200 400 600 800 1000
2200

2220

2240

2260

2280

2300

2320

Convergence curve

-100 -50 0 50 100
-100

-50

0

50

100
Search history

0 200 400 600 800 1000
-50

0

50

100
Trajectory

0 200 400 600 800 1000
2600

2800

3000

3200

Mean fitness

0 200 400 600 800 1000
2600

2620

2640

2660

Convergence curve

-100 -50 0 50 100
-100

-50

0

50

100
Search history

0 200 400 600 800 1000
-100

-50

0

50

100
Trajectory

0 200 400 600 800 1000
2800

3000

3200

3400

3600
Mean fitness

0 200 400 600 800 1000
2800

2850

2900

2950

3000

Convergence curve

Figure 14. Qualitative results including landscape, search history, the trajectory of the first agent in the first variable, mean fitness, and

convergence curve

[31]

3.5 Quantitative results

Although the qualitative measures proved the exploration and exploitation capability of GEO, they cannot

fully reflect how well it can solve optimization problems. This section uses statistical measures to quantify

the performance of GEO in different classes of benchmark functions. The arithmetic mean and the standard

deviation obtained from 30 independent runs are used as statistical measures for revealing GEO’s

performance. The arithmetic mean shows how GEO performs on average, while the standard deviation

shows how stable this algorithm is. Fixed-dimension unimodal and multimodal functions must be run with a

fixed amount of decision variables. However, scalable unimodal and multimodal functions can be run with

an arbitrary number of decision variables. All of the scalable functions were utilized with 30 dimensions.

The results of unimodal, multimodal, and composite benchmark functions are tabulated in Table 5, Table 6,

and Table 7, respectively. In all of these tables, the best average performances are highlighted with the bold

font for each benchmark function. Table 5 shows that GEO outperforms other algorithms in half of the

unimodal functions and competitive results in other unimodal functions. This depicts the good ability of

GEO to use the best solutions to guide the search toward promising areas of the search region. The results of

the standard deviation prove GEO’s stability. Table 6 reveals that GEO outperforms other algorithms in 13

out of 16 multimodal functions. This certifies the ability of GEO to explore different regions within the

search region to find better solutions. The standard deviations reported in this table reveal that GEO yields

highly stable results in the majority of the multimodal benchmark functions, compared to other algorithms.

Table 7 provides the results for composite functions from the CEC2017 competition test suite. The contents

of this table demonstrate that according to the average fitnesses obtained, GEO is able to outperform the

other algorithms in eight of the ten composite functions available in the test suite. In addition, the standard

deviations confirm the stability of the obtained solutions by GEO since it has the lowest standard deviation

for most of the composite test functions. Figure 15 provides the comparative box plots for the results of

composite functions.

Table 5. Results of unimodal benchmark functions

GEO GWO GA CSA PSO HS DA
 𝐹1 Mean 0.00E+00 1.02E−08 6.64E−12 2.49E−24 2.39E−29 2.03E−02 3.55E−03

Std 0.00E+00 8.77E−09 1.69E−11 4.24E−24 7.54E−29 2.38E−02 1.83E−02
 𝐹2 Mean 1.99E−94 3.67E−320 9.64E−14 1.40E−25 5.85E−33 4.27E−03 4.21E−06

Std 5.15E−94 0.00E+00 2.71E−13 1.91E−25 2.44E−32 4.13E−03 1.12E−05
 𝐹3 Mean 6.28E−126 0.00E+00 7.28E−14 3.81E−25 7.63E−45 2.33E−05 4.72E−07

Std 1.73E−125 0.00E+00 1.66E−13 5.92E−25 3.94E−44 4.91E−05 1.48E−06
 𝐹4 Mean −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00 −5.92E−01 −9.93E−01 −9.56E−01

Std 3.24E−16 0.00E+00 2.14E−06 4.95E−07 1.72E−01 9.17E−03 4.57E−02
 𝐹5 Mean −4.91E+00 −5.00E+00 −4.02E+00 −4.21E+00 −2.30E+00 −1.59E+00 −3.10E+00

Std 7.41E−03 1.21E−07 4.41E−02 4.04E−02 2.10E−01 7.41E−02 4.32E−01
 𝐹6 Mean 4.56E−12 8.01E−77 1.15E−01 1.75E−02 9.68E+03 2.71E+02 8.99E+02

Std 3.02E−12 2.11E−76 6.64E−02 8.24E−03 5.85E+03 3.40E+02 6.98E+02
 𝐹7 Mean 3.22E−14 3.07E−01 3.79E−04 7.83E−05 2.68E+01 1.05E+00 3.30E+00

Std 4.17E−14 2.47E−01 2.60E−04 3.70E−05 1.33E+01 3.08E+00 1.94E+00

[32]

Table 6. Results of multimodal benchmark functions

GEO GWO GA CSA PSO HS DA
 𝐹8 Mean −1.00E+00 −9.98E−01 −1.00E+00 −1.00E+00 −1.00E+00 −9.50E−01 −9.83E−01

Std 0.00E+00 1.14E−02 4.22E−12 0.00E+00 1.26E−04 4.20E−02 2.82E−02
 𝐹9 Mean −9.60E+02 −8.92E+02 −9.60E+02 −9.60E+02 −9.56E+02 −9.42E+02 −9.28E+02

Std 5.68E−13 8.22E+01 2.25E−04 5.68E−13 1.18E+01 3.01E+01 4.52E+01
 𝐹10 Mean 0.00E+00 4.77E−05 8.88E−13 9.27E−24 5.26E−32 4.88E−02 5.53E−04

Std 0.00E+00 2.54E−04 1.39E−12 9.04E−24 1.97E−31 6.19E−02 1.12E−03
 𝐹11 Mean 1.35E−31 3.06E−08 2.73E−12 2.74E−23 1.35E−31 1.24E−02 9.99E−04

Std 6.57E−47 2.78E−08 1.10E−11 5.07E−23 6.57E−47 2.94E−02 2.70E−03
 𝐹12 Mean 1.98E−01 1.01E−15 2.48E+00 3.31E+00 1.59E+01 4.69E+00 7.03E+00

Std 5.24E−01 6.38E−16 7.38E−01 5.94E−01 2.06E+00 3.39E+00 2.62E+00
 𝐹13 Mean 5.01E−03 3.88E+00 2.42E−01 1.83E−01 1.04E+02 3.34E+00 1.87E+01

Std 5.53E−03 2.94E+00 9.10E−02 5.18E−02 4.24E+01 4.10E+00 1.07E+01
 𝐹14 Mean 2.29E−01 5.28E−01 4.65E−01 5.53E−01 5.39E−01 4.38E−01 7.13E−01

Std 5.13E−02 1.09E−01 1.17E−01 1.19E−01 6.39E−02 1.64E−01 1.05E−01
 𝐹15 Mean −9.50E+00 −7.70E+00 −9.19E+00 −8.58E+00 −6.04E+00 −5.04E+00 −6.03E+00

Std 1.94E−01 1.11E+00 3.19E−01 7.66E−01 3.85E−01 6.90E−01 7.38E−01
 𝐹16 Mean 2.08E−02 2.58E−02 2.17E+00 3.21E+00 1.41E+07 3.06E+04 2.62E+01

Std 4.15E−02 1.21E−02 1.10E+00 1.25E+00 7.86E+06 1.19E+05 5.82E+01
 𝐹17 Mean 7.93E−03 3.30E−01 3.88E−02 1.11E−01 4.88E+07 1.12E+02 8.40E+04

Std 7.24E−03 1.68E−01 3.59E−02 1.14E−01 1.91E+07 2.76E+02 2.71E+05
 𝐹18 Mean 1.00E+00 2.23E+00 1.07E+00 1.01E+00 6.67E+00 1.04E+00 4.35E+00

Std 1.01E−04 1.84E+00 2.20E−02 3.01E−03 6.04E−01 8.78E−02 8.68E−01
 𝐹19 Mean 2.54E−01 8.72E+02 1.25E+02 6.80E+01 1.30E+10 1.30E+07 9.93E+07

Std 3.79E−01 4.86E+02 7.14E+01 2.98E+01 5.41E+09 3.96E+07 2.82E+08
 𝐹20 Mean 1.09E+01 2.03E+00 2.41E+01 2.39E+01 2.74E+02 2.10E+01 1.52E+02

Std 3.82E+00 4.64E+00 5.05E+00 6.97E+00 1.50E+01 3.63E+01 4.47E+01
 𝐹21 Mean 4.17E+00 2.63E+01 4.52E+01 1.02E+02 3.05E+04 2.18E+03 5.49E+03

Std 1.28E+01 6.35E−01 6.08E+01 7.13E+01 1.11E+04 4.05E+03 5.39E+03
 𝐹22 Mean 4.03E−01 1.73E−01 6.68E−01 8.36E−01 1.25E+01 2.87E+00 4.06E+00

Std 6.57E−02 4.42E−02 9.39E−02 1.34E−01 1.36E+00 2.17E+00 1.72E+00
 𝐹23 Mean 2.22E−20 9.39E−17 2.96E−15 3.88E−16 1.83E−10 2.41E−13 2.81E−12

Std 7.01E−20 2.90E−17 1.42E−15 2.15E−16 9.82E−11 3.91E−13 3.91E−12

Table 7. Results of composite benchmark functions

GEO GWO GA CSA PSO HS DA
 𝐹24 Mean 2.34E+03 2.40E+03 2.44E+03 2.43E+03 2.55E+03 2.71E+03 2.59E+03

Std 7.67E+00 4.95E+01 2.68E+01 2.92E+01 1.02E+01 2.68E+01 6.06E+01
 𝐹25 Mean 2.30E+03 5.27E+03 2.31E+03 2.49E+03 3.05E+03 9.91E+03 8.19E+03

Std 1.55E+00 2.23E+03 2.38E+00 8.56E+02 2.51E+02 5.42E+02 1.88E+03
 𝐹26 Mean 2.69E+03 2.77E+03 2.87E+03 2.93E+03 2.89E+03 3.43E+03 3.07E+03

Std 1.59E+01 5.40E+01 6.56E+01 9.81E+01 1.64E+01 5.66E+01 1.15E+02
 𝐹27 Mean 2.85E+03 2.98E+03 3.02E+03 3.12E+03 3.05E+03 3.90E+03 3.22E+03

Std 7.19E+00 7.30E+01 4.35E+01 1.27E+02 1.32E+01 1.25E+02 8.50E+01
 𝐹28 Mean 2.93E+03 3.00E+03 2.95E+03 2.94E+03 3.38E+03 6.26E+03 3.27E+03

Std 1.34E+01 5.77E+01 1.66E+01 2.19E+01 2.22E+02 1.05E+03 2.41E+02
 𝐹29 Mean 4.00E+03 4.85E+03 6.09E+03 5.34E+03 6.42E+03 1.09E+04 7.30E+03

Std 1.10E+03 4.68E+02 1.54E+03 1.47E+03 1.68E+02 1.15E+03 1.13E+03
 𝐹30 Mean 3.26E+03 3.25E+03 3.38E+03 3.33E+03 3.26E+03 4.03E+03 3.40E+03

Std 1.50E+01 1.59E+01 5.48E+01 6.93E+01 2.15E+01 2.14E+02 8.64E+01
 𝐹31 Mean 3.27E+03 3.42E+03 3.29E+03 3.30E+03 3.59E+03 1.01E+04 3.90E+03

Std 1.44E+01 9.23E+01 1.92E+01 2.32E+01 1.22E+02 1.72E+03 3.46E+02
 𝐹32 Mean 3.70E+03 3.83E+03 4.25E+03 4.29E+03 4.60E+03 6.25E+03 4.92E+03

Std 9.48E+01 1.97E+02 2.36E+02 2.13E+02 1.74E+02 4.03E+02 4.81E+02
 𝐹33 Mean 1.47E+06 7.25E+06 8.56E+05 1.42E+06 4.97E+06 7.33E+08 3.16E+07

Std 5.59E+05 5.10E+06 2.95E+05 1.38E+06 8.81E+06 3.44E+08 3.27E+07

[33]

GEO GWO GA CSA PSO HS DA

2400

2500

2600

2700

2800
F24

GEO GWO GA CSA PSO HS DA
2000

4000

6000

8000

10000

F25

GEO GWO GA CSA PSO HS DA

2800

3000

3200

3400

F26

GEO GWO GA CSA PSO HS DA

3000

3500

4000

F27

GEO GWO GA CSA PSO HS DA

3000

4000

5000

6000

7000
8000

F28

GEO GWO GA CSA PSO HS DA

4000

6000

8000
10000
12000

F29

GEO GWO GA CSA PSO HS DA

3500

4000

4500

F30

GEO GWO GA CSA PSO HS DA

4000

6000

8000

10000
12000
14000

F31

GEO GWO GA CSA PSO HS DA

4000

5000

6000

7000

F32

GEO GWO GA CSA PSO HS DA

106

108

F33

Figure 15. Boxplots of the results of CEC2017 composite functions

3.6 Convergence analysis

The effectiveness of GEO was verified in the previous subsection. However, the convergence analysis can

better reveal the explorative and exploitative behavior of GEO. Figure 16 shows the convergence curve for

GEO and other algorithms for six functions (and from unimodal functions, and from 𝐹1 𝐹7 𝐹10 𝐹19

multimodal functions, and and from composite functions). It can be concluded that GEO converges 𝐹27 𝐹32

a little later than other algorithms in initial iterations, but can often compensate with better final values for

the objective function.

[34]

100 101 102 103

Iterations

10-20

100
O

bj
 fu

n
va

lu
e

F1

GEO
GWO
GA
CSA
PSO
HS
DA

100 101 102 103

Iterations

10-15

10-10

10-5

100

105

O
bj

 fu
n

va
lu

e

F7

GEO
GWO
GA
CSA
PSO
HS
DA

100 101 102 103

Iterations

10-30

10-20

10-10

100

O
bj

 fu
n

va
lu

e

F10

GEO
GWO
GA
CSA
PSO
HS
DA

100 101 102 103

Iterations

100

105

1010

O
bj

 fu
n

va
lu

e

F19

GEO
GWO
GA
CSA
PSO
HS
DA

100 101 102 103

Iterations

3000

3200

3400

3600

3800

4000

4200

O
bj

 fu
n

va
lu

e

F27

GEO
GWO
GA
CSA
PSO
HS
DA

100 101 102 103

Iterations

4000

6000

8000

10000

12000

14000
16000

O
bj

 fu
n

va
lu

e

F32

GEO
GWO
GA
CSA
PSO
HS
DA

Figure 16. Convergence curve of GEO and compared algorithms

3.7 Scalability analysis

This subsection presents the results of the scalability analysis conducted to see how GEO is scalable for

problems with a large number of decision variables. Six benchmark functions from different classes were

considered for scalability analysis (and from unimodal functions, and form multimodal 𝐹1 𝐹6 𝐹16 𝐹20

functions, and and from composite functions). In addition to GEO, all the other algorithms 𝐹25 𝐹29

previously compared in this study also participate in this analysis for comparison. The experiment is carried

out for 10D, 30D, 50D, and 100D since the CEC2017 test suite only supports these numbers of dimensions.

The best objective value obtained and the computation time of each algorithm was recorded for 30

independent runs on each benchmark function. Figure 17 displays the results for the best objective value

obtained in the form of error bars. The center points show the arithmetic mean of the 30 independent runs,

while the upper and lower bars show the minimum and maximum objective values obtained. Results confirm

GEO’s almost consistent performance as the dimensions rise. Figure 18 shows the same statistics for

computation times. It is observed that in terms of computation time, GEO belongs to the midpack and can

retain its relative computation time compared to other algorithms. This implies that the temporal

performance of GEO is consistent relative to that of other algorithms when we transit from small to large

problems. It worths noting that the plots in Figure 17 and Figure 18 have a logarithmic scale along the -axis 𝑦

to better demonstrate the differences in small values. However, since logarithmically scaled plots cannot

show the values exactly equal to zero. In this experiment, the maximum number of function evaluations of

 was used, similar to the CEC2017 competition [69], and a population size of was used for all of 106 2 × 𝐷

the algorithms and all of the benchmark functions for the scalability analysis.

[35]

10 30 50 100
Dimension

-5

-4

-3

-2

-1

O
bj

ec
tiv

e
va

lu
e

F1

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
10-300

10-200

10-100

100

O
bj

ec
tiv

e
va

lu
e

F6

Dimension

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

10-40

10-20

100

O
bj

ec
tiv

e
va

lu
e

F16

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

10-5

100

105

O
bj

ec
tiv

e
va

lu
e

F20

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

104

O
bj

ec
tiv

e
va

lu
e

F25

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

104

105

O
bj

ec
tiv

e
va

lu
e

F29

GEO
GWO
GA
CSA
PSO
HS
DA

Figure 17. Results of scalability analysis for objective value

10 30 50 100
Dimension

100

101

102

Ti
m

e
(S

ec
on

ds
)

F1

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

100

101

102

Ti
m

e
(S

ec
on

ds
)

F6

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

100

101

102

Ti
m

e
(S

ec
on

ds
)

F16

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

100

101

102

Ti
m

e
(S

ec
on

ds
)

F20

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

100

101

102

Ti
m

e
(S

ec
on

ds
)

F25

GEO
GWO
GA
CSA
PSO
HS
DA

10 30 50 100
Dimension

100

101

102

103
Ti

m
e

(S
ec

on
ds

)
F29

GEO
GWO
GA
CSA
PSO
HS
DA

Figure 18. Results of scalability analysis for computation time

4 Multi-objective optimization results for MOGEO

This section provides the results of applying MOGEO to multi-objective benchmark functions. The

parameters specific to multi-objective optimization are set according to Table 8. For parameters that the

algorithms share with their single-objective version, the parameters introduced in Table 1 are used. Since

both MOGEO, MOGWO, MOPSO, and MOSSA are archive-based solvers, a similar archive size is used for

both of them. However, MOGEO does not use the grid mechanism and does not need parameters like the

number of grids and grid multiplier. CEC2009 [71] and DTLZ [72] test suites, which are among the most

challenging test suites for multi-objective problems, are utilized to test the performance of MOGEO. Details

of the mathematical formulation of CEC2009 and DTLZ benchmark functions are presented in Table 9 and

Table 10, respectively. In consistence with previous experiments, the results of MOGEO are compared to

that of four well-known multi-objective algorithms, namely Multi-Objective Grey Wolf Optimizer

(MOGWO) [58], Non-dominated Sorting Genetic Algorithm II (NSGA-II) [63], Multi-Objective Particle

Swarm Optimization (MOPSO) [55], and Multi-Objective Salp Swarm Algorithm (MOSSA) [41].

[36]

Table 8. Parameter setting for multi-objective benchmark functions

Algorithm Parameter Value
All algorithms Population size 200
MOGEO Archive size 100
MOGWO Archive size 100

Number of grids 20
Grid multiplier 10

NSGA-II – –
MOPSO Archive size 100

Number of grids 20
Grid multiplier 10

MOSSA Archive size 100
Number of grids 20
Grid multiplier 10
Number of leader salps Population size / 2

[37]

Table 9. Multi-objective benchmark functions from the CEC2009 test suite

Name Equation 𝐷
UF1

 {𝑓1(𝑥) = 𝑥1 +
2

|𝐽1|∑𝑗 ∈ 𝐽1[𝑥𝑗 ― sin (6𝜋𝑥1 +
𝑗𝜋
𝑛)]2

𝑓2(𝑥) = 1 ― 𝑥1 +
2

|𝐽2|∑𝑗 ∈ 𝐽2[𝑥𝑗 ― sin (6𝜋𝑥1 +
𝑗𝜋
𝑛)]2

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

30

UF2
 {𝑓1(𝑥) = 𝑥1 +

2
|𝐽1|∑𝑗 ∈ 𝐽1

𝑦2
𝑗

𝑓2(𝑥) = 1 ― 𝑥1 +
2

|𝐽2|∑𝑗 ∈ 𝐽2
𝑦2

𝑗

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

 𝑦𝑗 = {𝑥𝑗 ― [0.3𝑥2
1cos (24𝜋𝑥1 +

4𝑗𝜋
𝑛) + 0.6𝑥1]cos (6𝜋𝑥1 +

𝑗𝜋
𝑛) 𝑗 ∈ 𝐽1

𝑥𝑗 ― [0.3𝑥2
1cos (24𝜋𝑥1 +

4𝑗𝜋
𝑛) + 0.6𝑥1]cos (6𝜋𝑥1 +

𝑗𝜋
𝑛) 𝑗 ∈ 𝐽2

30

UF3

 {𝑓1(𝑥) = 𝑥1 +
2

|𝐽1|(4∑
𝑗 ∈ 𝐽1

𝑦2
𝑗 ― 2∏

𝑗 ∈ 𝐽1
cos (20𝑦𝑗𝜋

𝑗) + 2)
𝑓2(𝑥) = 1 ― 𝑥1 +

2
|𝐽2|(4∑

𝑗 ∈ 𝐽2
𝑦2

𝑗 ― 2∏
𝑗 ∈ 𝐽2

cos (20𝑦𝑗𝜋
𝑗) + 2)

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

, 𝑦𝑗 = 𝑥𝑗 ― 𝑥
0.5(1 +

3(𝑗 ― 2)
𝑛 ― 2)

1 𝑗 = 2,…,𝑛

30

UF4
 {𝑓1(𝑥) = 𝑥1 +

2
|𝐽1|∑𝑗 ∈ 𝐽1

ℎ(𝑦𝑗)

𝑓2(𝑥) = 1 ― 𝑥2
1 +

2
|𝐽2|∑𝑗 ∈ 𝐽2

ℎ(𝑦𝑗)

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

, , 𝑦𝑗 = 𝑥𝑗 ― sin (6𝜋𝑥1 +
𝑗𝜋
𝑛) 𝑗 = 2,…,𝑛 ℎ(𝑡) =

|𝑡|

1 + 𝑒2|𝑡|

30

UF5

 {𝑓1(𝑥) = 𝑥1 + (1
2𝑁 + 𝜀)|sin (2𝑁𝜋𝑥1)| +

2
|𝐽1|∑𝑗 ∈ 𝐽1

ℎ(𝑦𝑗)

𝑓2(𝑥) = 1 ― 𝑥1 + (1
2𝑁 + 𝜀)|sin (2𝑁𝜋𝑥1)| +

2
|𝐽2|∑𝑗 ∈ 𝐽2

ℎ(𝑦𝑗)

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

, , , is an integer, 𝑦𝑗 = 𝑥𝑗 ― sin (6𝜋𝑥1 +
𝑗𝜋
𝑛) 𝑗 = 2,…,𝑛 ℎ(𝑡) = 2𝑡2 ― cos (4𝜋𝑡) + 1 𝑁 𝜀 > 0

30

UF6

 {𝑓1(𝑥) = 𝑥1 + max {0,2(1
2𝑁)sin (2𝑁𝜋𝑥1)} +

2
|𝐽1|(4∑

𝑗 ∈ 𝐽1
𝑦2

𝑗 ― 2∏
𝑗 ∈ 𝐽1

cos (20𝑦𝑗𝜋
𝑗) + 2)

𝑓2(𝑥) = 1 ― 𝑥1 + max {0,2(1
2𝑁)sin (2𝑁𝜋𝑥1)} +

2
|𝐽2|(4∑

𝑗 ∈ 𝐽2
𝑦2

𝑗 ― 2∏
𝑗 ∈ 𝐽2

cos (20𝑦𝑗𝜋
𝑗) + 2)

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

, 𝑦𝑗 = 𝑥𝑗 ― sin (6𝜋𝑥1 +
𝑗𝜋
𝑛) 𝑗 = 2,…,𝑛

30

UF7
 {𝑓1(𝑥) = 5 𝑥1 +

2
|𝐽1|∑𝑗 ∈ 𝐽1

𝑦2
𝑗

𝑓2(𝑥) = 1 ― 5 𝑥1 +
2

|𝐽2|∑𝑗 ∈ 𝐽2
𝑦2

𝑗

, 𝐽1 = {𝑗│𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛} 𝐽2 = {𝑗│𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

, 𝑦𝑗 = 𝑥𝑗 ― sin (6𝜋𝑥1 +
𝑗𝜋
𝑛) 𝑗 = 2,…,𝑛

30

UF8

 {𝑓1(𝑥) = cos (0.5𝑥1𝜋)cos (0.5𝑥2𝜋) +
2

|𝐽1|∑𝑗 ∈ 𝐽1(𝑥𝑗 ― 2𝑥2sin (2𝜋𝑥1 +
𝑗𝜋
𝑛))2

𝑓2(𝑥) = cos (0.5𝑥1𝜋)cos (0.5𝑥2𝜋) +
2

|𝐽2|∑𝑗 ∈ 𝐽2(𝑥𝑗 ― 2𝑥2sin (2𝜋𝑥2 +
𝑗𝜋
𝑛))2

𝑓3(𝑥) = sin (0.5𝑥1𝜋) +
2

|𝐽3|∑𝑗 ∈ 𝐽3(𝑥𝑗 ― 2𝑥2sin (2𝜋𝑥1 +
𝑗𝜋
𝑛))2

, 𝐽1 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 ― 1 is a mulitplication of 3}
, 𝐽2 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 ― 2 is a mulitplication of 3}

 𝐽3 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 is a mulitplication of 3}

30

UF9

 {𝑓1(𝑥) = 0.5[max {0,(1 + 𝜀)(1 ― 4(2𝑥1 ― 1)2)} + 2𝑥1]𝑥2 +
2

|𝐽1|∑𝑗 ∈ 𝐽1(𝑥𝑗 ― 2𝑥2sin (2𝜋𝑥1 +
𝑗𝜋
𝑛))2

𝑓2(𝑥) = 0.5[max {0,(1 + 𝜀)(1 ― 4(2𝑥1 ― 1)2)} ― 2𝑥1 + 2]𝑥2 +
2

|𝐽2|∑𝑗 ∈ 𝐽2(𝑥𝑗 ― 2𝑥2sin (2𝜋𝑥2 +
𝑗𝜋
𝑛))2

𝑓3(𝑥) = 1 ― 𝑥2 +
2

|𝐽3|∑𝑗 ∈ 𝐽3(𝑥𝑗 ― 2𝑥2sin (2𝜋𝑥1 +
𝑗𝜋
𝑛))2

, 𝐽1 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 ― 1 is a mulitplication of 3}
, 𝐽2 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 ― 2 is a mulitplication of 3}

 𝐽3 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 is a mulitplication of 3}

30

[38]

UF10

 {𝑓1(𝑥) = cos (0.5𝑥1𝜋)cos (0.5𝑥2𝜋) +
2

|𝐽1|∑𝑗 ∈ 𝐽1
[4𝑦2

𝑗 ― cos (8𝜋𝑦𝑗) + 1]
𝑓2(𝑥) = cos (0.5𝑥1𝜋)cos (0.5𝑥2𝜋) +

2
|𝐽2|∑𝑗 ∈ 𝐽2

[4𝑦2
𝑗 ― cos (8𝜋𝑦𝑗) + 1]

𝑓3(𝑥) = sin (0.5𝑥1𝜋) +
2

|𝐽3|∑𝑗 ∈ 𝐽3
[4𝑦2

𝑗 ― cos (8𝜋𝑦𝑗) + 1]

, 𝐽1 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 ― 1 is a mulitplication of 3}
, 𝐽2 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 ― 2 is a mulitplication of 3}

, 𝐽3 = {𝑗│3 ≤ 𝑗 ≤ 𝑛, and 𝑗 is a multiplication of 3}

, 𝑦𝑗 = 𝑥𝑗 ―2𝑥2sin (2𝜋𝑥1 +
𝑗𝜋
𝑛) 𝑗 = 3,…,𝑛

10

[39]

Table 10. Multi-objective benchmark functions from the DTLZ test suite

Name Equation 𝐷 Number of objectives
DTLZ 1

 {𝑓1(𝑥) =
1
2𝑥1𝑥2…𝑥𝑀 ― 1(1 + 𝑔(𝑥𝑀))

𝑓2(𝑥) =
1
2𝑥1𝑥2…(1 ― 𝑥𝑀 ― 1)(1 + 𝑔(𝑥𝑀))

⋮
𝑓𝑀 ― 1(𝑥) =

1
2𝑥1(1 ― 𝑥2)(1 + 𝑔(𝑥𝑀))

𝑓𝑀(𝑥) =
1
2(1 ― 𝑥1)(1 + 𝑔(𝑥𝑀))

 𝑔(𝑥𝑀) = 100[|𝑥𝑀| + ∑
𝑥𝑖 ∈ 𝑥𝑀

(𝑥𝑖 ― 0.5)2 ― cos (20𝜋(𝑥𝑖 ― 0.5))]
, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

3 2, 3

DTLZ 2

 {𝑓1(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥1
𝜋
2)…cos (𝑥𝑀 ― 2

𝜋
2)cos (𝑥𝑀 ― 1

𝜋
2)

𝑓2(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥1
𝜋
2)…cos (𝑥𝑀 ― 2

𝜋
2)sin (𝑥𝑀 ― 1

𝜋
2)

𝑓3(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥1
𝜋
2)…sin (𝑥𝑀 ― 2

𝜋
2)

⋮
𝑓𝑀(𝑥) = (1 + 𝑔(𝑥𝑀))sin (𝑥1

𝜋
2)

 𝑔(𝑥𝑀) = ∑
𝑥𝑖 ∈ 𝑥𝑀

(𝑥𝑖 ― 0.5)2

, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

10 2, 3

DTLZ 3

 {𝑓1(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥1
𝜋
2)…cos (𝑥𝑀 ― 2

𝜋
2)cos (𝑥𝑀 ― 1

𝜋
2)

𝑓2(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥1
𝜋
2)…cos (𝑥𝑀 ― 2

𝜋
2)sin (𝑥𝑀 ― 1

𝜋
2)

𝑓3(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥1
𝜋
2)…sin (𝑥𝑀 ― 2

𝜋
2)

⋮
𝑓𝑀(𝑥) = (1 + 𝑔(𝑥𝑀))sin (𝑥1

𝜋
2)

 𝑔(𝑥𝑀) = 100[|𝑥𝑀| + ∑
𝑥𝑖 ∈ 𝑥𝑀

(𝑥𝑖 ― 0.5)2 ― cos (20𝜋(𝑥𝑖 ― 0.5))]
, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

3 2, 3

DTLZ 4

 {𝑓1(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥𝛼
1

𝜋
2)…cos (𝑥𝛼

𝑀 ― 2
𝜋
2)cos (𝑥𝛼

𝑀 ― 1
𝜋
2)

𝑓2(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥𝛼
1

𝜋
2)…cos (𝑥𝛼

𝑀 ― 2
𝜋
2)sin (𝑥𝛼

𝑀 ― 1
𝜋
2)

𝑓3(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝑥𝛼
1

𝜋
2)…sin (𝑥𝛼

𝑀 ― 2
𝜋
2)

⋮
𝑓𝑀(𝑥) = (1 + 𝑔(𝑥𝑀))sin (𝑥𝛼

1
𝜋
2)

 𝑔(𝑥𝑀) = ∑
𝑥𝑖 ∈ 𝑥𝑀

(𝑥𝑖 ― 0.5)2

 𝛼 = 100
, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

30 2, 3

DTLZ 5

 {𝑓1(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝜃1
𝜋
2)…cos (𝜃𝑀 ― 2

𝜋
2)cos (𝜃𝑀 ― 1

𝜋
2)

𝑓2(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝜃1
𝜋
2)…cos (𝜃𝑀 ― 2

𝜋
2)sin (𝜃𝑀 ― 1

𝜋
2)

𝑓3(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝜃1
𝜋
2)…sin (𝜃𝑀 ― 2

𝜋
2)

⋮
𝑓𝑀(𝑥) = (1 + 𝑔(𝑥𝑀))sin (𝜃1

𝜋
2)

 𝑔(𝑥𝑀) = ∑
𝑥𝑖 ∈ 𝑥𝑀

(𝑥𝑖 ― 0.5)2

, for 𝜃𝑖 =
𝜋

4(1 + 𝑔(𝑥𝑀))(1 + 2𝑔(𝑥𝑀)𝑥𝑖) 𝑖 = 2,3,…,(𝑀 ― 1)

, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

30 2, 3

DTLZ 6

 {𝑓1(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝜃1
𝜋
2)…cos (𝜃𝑀 ― 2

𝜋
2)cos (𝜃𝑀 ― 1

𝜋
2)

𝑓2(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝜃1
𝜋
2)…cos (𝜃𝑀 ― 2

𝜋
2)sin (𝜃𝑀 ― 1

𝜋
2)

𝑓3(𝑥) = (1 + 𝑔(𝑥𝑀))cos (𝜃1
𝜋
2)…sin (𝜃𝑀 ― 2

𝜋
2)

⋮
𝑓𝑀(𝑥) = (1 + 𝑔(𝑥𝑀))sin (𝜃1

𝜋
2)

 𝑔(𝑥𝑀) = ∑
𝑥𝑖 ∈ 𝑥𝑀

𝑥0.1
𝑖

, for 𝜃𝑖 =
𝜋

4(1 + 𝑔(𝑥𝑀))(1 + 2𝑔(𝑥𝑀)𝑥𝑖) 𝑖 = 2,3,…,(𝑀 ― 1)

, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

10 2, 3

[40]

DTLZ 7

 {𝑓1(𝑥1) = 𝑥1
𝑓2(𝑥2) = 𝑥2
⋮
𝑓𝑀 ― 1(𝑥𝑀 ― 1) = 𝑥𝑀 ― 1
𝑓𝑀(𝑥) = (1 + 𝑔(𝑥𝑀))ℎ(𝑓1,𝑓2,…,𝑓𝑀 ― 1,𝑔)

 𝑔(𝑥𝑀) = 1 +
9

|𝑥𝑚|∑𝑥𝑖 ∈ 𝑥𝑀
𝑥𝑖

 ℎ(𝑓1,𝑓2,…,𝑓𝑀 ― 1,𝑔) = 𝑀 ― ∑𝑀 ― 1
𝑖 = 1 [𝑓𝑖

1 + 𝑔(1 + sin (3𝜋𝑓𝑖))]
, for 0 ≤ 𝑥 ≤ 1 𝑖 = 1,2,…,𝑛

30 2, 3

[41]

Since the solution to the multi-objective problems are a set of solutions rather than a single solution, the

comparison of the Pareto fronts becomes an issue. Inverse Generational Distance (IGD) [73,74] provides a

way to quantify the obtained Pareto front by mapping the whole Pareto front to a single value that can be

used for comparing the quality of the obtained Pareto fronts. It measures the average distance between each

member of the true Pareto front to the nearest member of the obtained Pareto front.

 𝐼𝐺𝐷 =
∑𝑛

𝑖 = 1𝑑2
𝑖

𝑛
(13)

Where is the Euclidean distance between the -th member of the true Pareto front and the nearest member 𝑑𝑖 𝑖

of the obtained Pareto front and is the total number of members of the true Pareto front. 𝑛

Table 11 presents the arithmetic mean, and the standard deviation of the IGD score calculated for each of the

30 independent runs of each algorithm on each of the multi-objective benchmark functions. It reveals that

MOGEO outperformed the other algorithms in eight of the multi-objective benchmark functions. MOGEO

was also able to provide more stable results in three of the problems in the test suite. This confirms that

MOGEO can successfully handle multi-objective optimization problems. MOGEO’s higher rate of

converging to the optimal Pareto front can be attributed to the fact the search agents always choose prey

from the external archive that stores the Pareto front obtained so far. The archive update mechanism, when

triggered, usually drop a member from the most densely populated areas of the archive, which helps

MOGEO converge to more uniformly distributed fronts. The good exploration mechanism of GEO, which

also benefits MOGEO and was numerically proved in the previous section, helps MOGEO avoid local fronts

to converge to the true Pareto front. Figure 19 displays the best Pareto front (out of the 30 independent runs)

by the tested algorithms in terms of IGD.

Table 11. Results of IGD scores for CEC 2009 multi-objective benchmark functions

MOGEO MOGWO NSGA-II MOPSO MOSSA
UF1 Mean 0.004 0.0057 0.0066 0.0052 0.0058

Std 0.0004 0.0005 0.0018 0.0007 0.0003
UF2 Mean 0.0024 0.0036 0.0039 0.0032 0.0036

Std 0.0004 0.0005 0.0007 0.0002 0.0005
UF3 Mean 0.009 0.0171 0.0148 0.0204 0.0134

Std 0.0013 0.003 0.0016 0.0003 0.0045
UF4 Mean 0.0024 0.0049 0.0063 0.006 0.0047

Std 0.0001 0.0004 0.0004 0.0002 0.0005
UF5 Mean 0.1915 0.1994 0.1462 0.1944 0.1558

Std 0.061 0.0868 0.0628 0.1051 0.0284
UF6 Mean 0.0173 0.021 0.0219 0.0248 0.0104

Std 0.0056 0.0074 0.006 0.007 0.0028
UF7 Mean 0.0021 0.0064 0.0169 0.0112 0.0042

Std 0.0001 0.0065 0.0079 0.0072 0.0003
UF8 Mean 0.0121 0.052 0.0169 0.0142 0.0207

Std 0.0027 0.0188 0.0012 0.0005 0.0032
UF9 Mean 0.0137 0.0176 0.0221 0.0176 0.0291

Std 0.0035 0.0019 0.005 0.0016 0.0087
UF10 Mean 0.0219 0.0918 0.0828 0.0486 0.0585

Std 0.0067 0.1208 0.0365 0.0166 0.0304

[42]

UF1

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1
f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

UF2

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1
f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

UF3

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1
f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

UF4

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2
MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

UF5

0 0.5 1 1.5 2
f1

0

0.5

1

1.5

2

f 2

MOGEO

0 0.5 1 1.5
f1

0

0.5

1

1.5

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1 1.5
f1

0

0.5

1

1.5

f 2

MOPSO

0 0.5 1 1.5 2
f1

0

0.5

1

1.5

2

f 2
MOSSA

UF6

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1 1.5
f1

0

0.5

1

1.5

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

[43]

UF7

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1
f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

UF8
0
0

0.5

0

f 3

0.5

MOGEO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOGWO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

NSGA-II

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOPSO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOSSA

f2

1

0.5

f1
1 1

UF9
0
0

0.5

0

f 3

0.5

MOGEO

f2

1

0.5

f1
1 1

0
0

0

1f 3

MOGWO

f2

1

f1

2

1
2 2

0
0

0

1f 3

NSGA-II

f2

1

f1

2

1
2 2

0
0

0.5

0

f 3

0.5

1

MOPSO

f2

0.5

f1

1.5

1 1
1.5 1.5

0
0

0

1f 3

MOSSA

f2

1

f1

2

1
2 2

UF10
0
0

0

1f 3

MOGEO

f2

1

f1

2

1
2 2

0
0

0.5

0

f 3

0.5

MOGWO

f2

1

0.5

f1
1 1

0
0

0

1f 3

NSGA-II

f2

1

f1

2

1
2 2

0
0

0

1f 3

MOPSO

f2

1

f1

2

1
2 2

0
0

0

1f 3

MOSSA

f2

1

f1

2

1
2 2

Figure 19. Best Pareto fronts achieved by multi-objective solvers for the CEC 2009 test suite

MOGEO is also tested on the DTLZ test suite, which is another challenging multi-objective test suite. A

notable feature of this test suite is its scalability in the number of objectives. In other words, this test suite

can be used with any number of objective functions. In this study, we focus on problems with two and three

objectives. Table 12 displays the arithmetic mean and the standard deviation of IGD scores for 30

independent runs of MOGEO on the problems of the DTLZ test suite with two and three objective functions.

It is revealed that MOGEO is able to outperform the other algorithms in one problem out of seven bi-

objective problems, and two out of seven tri-objective problems. MOGEO has provided competitive results

in other problems. Figure 20 and Figure 21 display the best optimal Pareto front achieved by the algorithms,

according to IGD scores.

[44]

Table 12. Results of IGD scores for DTLZ multi-objective benchmark functions

2 objectives 3 objectives
MOGEO MOGWO NSGA-II MOPSO MOSSA MOGEO MOGWO NSGA-II MOPSO MOSSA

DTLZ 1 Mean 21.485 20.203 5.1113 8.0282 19.033 10.32 19.551 11.144 7.8028 22.037
Std 4.9369 4.09 1.192 3.9383 3.9375 2.9302 4.2953 5.644 3.0162 9.8469

DTLZ 2 Mean 6.9452 6.9041 6.3703 7.0545 6.714 8.8323 8.7484 7.9095 8.0977 7.8462
Std 0.0517 0.0877 0.3375 0.069 0.0829 0.1367 0.6491 0.5309 0.0633 0.1516

DTLZ 3 Mean 18.697 19.729 7.7265 11.992 14.603 17.828 29.794 18.911 12.314 27.624
Std 6.3404 5.8729 1.8664 4.5917 4.3449 3.7691 4.8473 10.023 4.7149 8.7055

DTLZ 4 Mean 7.3187 7.4069 5.582 7.0472 7.4759 10.862 12.235 10.419 11.81 9.6378
Std 0.1105 0.6238 2.5732 0.8244 0.639 0.2894 0.3679 2.164 0.3363 0.1586

DTLZ 5 Mean 6.8398 7.5905 7.6684 7.0497 6.4997 6.9365 9.1043 8.1875 7.2588 6.494
Std 0.0449 0.1959 1.9841 0.1487 0.0781 0.0877 0.436 2.2108 0.2541 0.0643

DTLZ 6 Mean 7.238 8.9986 18.839 13.906 8.2068 7.5248 17.023 21.946 27.102 9.8256
Std 0.1464 0.7214 2.2866 1.0908 0.3778 0.3463 1.1571 1.3502 0.0761 0.8706

DTLZ 7 Mean 8.6588 10.611 15.664 8.6916 8.5328 10.767 14.47 24.438 12.288 12.412
Std 0.0824 1.197 1.7947 1.1061 0.9813 0.2797 6.0019 2.4592 0.2514 0.8748

[45]

DTLZ 1

0 0.2 0.4 0.6
f1

0

0.2

0.4

0.6

f 2

MOGEO

0 0.2 0.4 0.6
f1

0

0.2

0.4

0.6

f 2

MOGWO

0 0.2 0.4 0.6
f1

0

0.2

0.4

0.6

f 2

NSGA-II

0 0.2 0.4 0.6
f1

0

0.2

0.4

0.6

f 2

MOPSO

0 0.2 0.4 0.6
f1

0

0.2

0.4

0.6

f 2

MOSSA

DTLZ 2

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

DTLZ 3

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

DTLZ 4

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

DTLZ 5

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1
f 2

MOSSA

DTLZ 6

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGEO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOGWO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

NSGA-II

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOPSO

0 0.5 1
f1

0

0.2

0.4

0.6

0.8

1

f 2

MOSSA

DTLZ 7

0 0.5 1
f1

2

3

4

5

6

7

f 2

MOGEO

0 0.5 1
f1

2

3

4

5

6

7

f 2

MOGWO

0 0.5 1
f1

2

3

4

5

6

7

f 2

NSGA-II

0 0.5 1
f1

2

3

4

5

6

7

f 2

MOPSO

0 0.5 1
f1

2

3

4

5

6

7

f 2

MOSSA

Figure 20. Best Pareto fronts achieved by multi-objective solvers for the DTLZ test suite with two objectives

[46]

DTLZ 1
0
0

0.2

0

0.4

f 3

MOGEO

f2

0.6

f1

0.5 0.5

0
0

0.2

0

0.4

f 3

MOGWO

f2

0.6

f1

0.5 0.5

0
0

0.2

0

0.4

f 3

NSGA-II

f2

0.6

f1

0.5 0.5

0
0

0.2

0

0.4

f 3

MOPSO

f2

0.6

f1

0.5 0.5

0
0

0.2

0

0.4

f 3

MOSSA

f2

0.6

f1

0.5 0.5

DTLZ 2
0
0

0.5

0

f 3

0.5

MOGEO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOGWO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

NSGA-II

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOPSO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOSSA

f2

1

0.5

f1
1 1

DTLZ 3
0
0

0.5

0

f 3

0.5

MOGEO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOGWO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

NSGA-II

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOPSO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOSSA

f2

1

0.5

f1
1 1

DTLZ 4
0
0

0.5

0

f 3

0.5

MOGEO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOGWO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

NSGA-II

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOPSO

f2

1

0.5

f1
1 1

0
0

0.5

0

f 3

0.5

MOSSA

f2

1

0.5

f1
1 1

DTLZ 5
0

0.2

1 0

0.4

f 3

MOGEO

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

MOGWO

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

NSGA-II

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

MOPSO

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

MOSSA

f1

0.6

0.5

f2

0.5
10

DTLZ 6
0

0.2

1 0

0.4

f 3

MOGEO

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

MOGWO

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

NSGA-II

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

MOPSO

f1

0.6

0.5

f2

0.5
10

0

0.2

1 0

0.4

f 3

MOSSA

f1

0.6

0.5

f2

0.5
10

DTLZ 7
2
0

4

6

0

f 3

8

MOGEO

f2

0.5

10

f1

0.5
1 1

2
0

4

6

0

f 3

8

MOGWO

f2

0.5

10

f1

0.5
1 1

2
0

4

6

0

f 3

8

NSGA-II

f2

0.5

10

f1

0.5
1 1

2
0

4

6

0

f 3

8

MOPSO

f2

0.5

10

f1

0.5
1 1

2
0

4

6

0

f 3

8

MOSSA

f2

0.5

10

f1

0.5
1 1

Figure 21. Best Pareto fronts achieved by multi-objective solvers for the DTLZ test suite with three objectives

[47]

5 Engineering benchmark tests

In order to test how the proposed GEO can solve real-world engineering problems, the proposed GEO is

applied to five well-known engineering benchmark problems in this section. The nonlinear nature of many

engineering optimization problems makes metaheuristic algorithms a compelling candidate for solving these

problems. In this study, we solve the following engineering benchmark problems: three-bar truss design,

cantilever beam design, tension/compression spring design, and welded beam design. In all of the tests, the

results of GEO is compared to that of other metaheuristic methods that are already used in previous sections.

5.1 Constraint handling method

The distinguishing feature of the benchmark problems of this section is that they contain constraints.

Therefore, the constraints should be handled properly so that the obtained results do not significantly violate

the constraints. Constraint handling is one of the challenges in optimization problems, and various methods

have been proposed to overcome this challenge. We use the penalty function approach in this study. The

penalty function can be defined as (14) [75].

 𝐹(𝑥,𝑚𝑖,𝑣𝑗) = 𝑓(𝑥) + ∑𝑀
𝑖 = 1𝑚𝑖𝜑2

𝑖 + ∑𝑁
𝑗 = 1𝑣𝑗𝜔2

𝑗 (14)

Where is the original objective function, is the number of inequality constraints, is the penalty 𝑓(𝑥) 𝑀 𝑚𝑖

factor for inequality constraints, and is the amount of constraint violation for the -th inequality 𝜑𝑖 𝑖

constraint, is the number of equality constraints, is the penalty factor for equality constraints, and is 𝑁 𝑣𝑗 𝜔𝑗

the amount of constraint violation for the -th equality constraint. The advantage of using the penalty 𝑗

function is that it transforms the constrained problem into an unconstrained problem. Important notice for

implementing penalty function is to assign suitable values for penalty factors (and). We use for 𝑚𝑖 𝑣𝑗 1015

both of the penalty factors, which is suitable in this regard [76].

5.2 Three-bar truss design

This engineering problem seeks to find the area of bars 1 () and 3 that minimizes the total weight of 𝑥1 (𝑥2)

the truss. The structure of the three-bar design problem is presented in Figure 22, and the mathematical

formulation is shown in Equation (15).

D

1 2 3

A1 A3

A2

A1 = A3
4

Figure 22. The three-bar truss design problem

[48]

Minimize 𝑓(𝑥) = (2 2𝑥1 + 𝑥2) × 𝑙

Subject to:

 𝑔1(𝑥) =
2𝑥1 + 𝑥2

2𝑥2
1 + 2𝑥1𝑥2

𝑃 ― 𝜎 ≤ 0

 𝑔2(𝑥) =
𝑥2

2𝑥2
1 + 2𝑥1𝑥2

𝑃 ― 𝜎 ≤ 0

 𝑔3(𝑥) =
1

2𝑥2 + 𝑥1
𝑃 ― 𝜎 ≤ 0

Where

, , , 𝑙 = 100 cm 𝑃 = 2 KN/cm2 𝜎 = 2 KN/cm2 0 ≤ 𝑥1,𝑥2 ≤ 1

(15)

Optimal values of decision variables (), constraint violation (), and the optimal objective function values 𝑥𝑗 𝑔𝑖

() obtained by applying GEO and other algorithms on the three-bar truss design problem are tabulated in 𝑓

Table 13. It reveals that the proposed GEO can outperform GWO, GA, PSO, HS, and DA while showing

competitive results compared to CSA. It can also be witnessed that the first constraint () is active in the 𝑔1

optimal solution, and GEO is among the algorithms that have the smallest constraint violation. This

confirms that the proposed algorithm can perform quite well in constrained problems.

Table 13. Best results obtained from algorithms for the three-bar truss design problem

GEO GWO GA CSA PSO HS DA
 𝑥1 0.7886711 0.7887804 0.7886422 0.7886751 0.7882546 0.7895572 0.7883714
 𝑥2 0.4082597 0.4079592 0.4083416 0.4082483 0.4094389 0.4060659 0.409108
 𝑔1 −3.46E−10 −6.54E−06 −2.18E−08 6.75E−14 −1.34E−08 −2.33E−04 7.33E−14
 𝑔2 −1.46E+00 −1.46E+00 −1.46E+00 −1.46E+00 −1.46E+00 −1.47E+00 −1.46E+00
 𝑔3 −5.36E−01 −5.36E−01 −5.36E−01 −5.36E−01 −5.37E−01 −5.34E−01 −5.37E−01

 (Weight) 𝑓 263.89584 263.89671 263.89585 263.89584 263.89598 263.9271 263.89591

Table 13 only showed the best obtained results. To see which algorithms have similar performance, we need

to take into account the results of all of the 30 runs of the algorithms on the problem. A Kruskal-Wallis test

is performed here to see whether the mean objective function obtained by algorithms are significantly

different. Table 14 shows that the null hypothesis is rejected. In other words, one or more of the algorithms

has significantly different performance compared to the others. To find out which algorithms perform

statistically similar, a multiple comparisons (post hoc) test is performed. Figure 23 shows the confidence

intervals of the Tukey-Kramer test, which reveals that GEO has statistically similar performance compared

to GWO.

Table 14. Kruskal-Wallis table for the results of the three-bar truss design problem

Source SS df MS 𝜒2 -value𝑝
Groups 694319.9 6 115720 188.0368 6.65E–38
Error 77406.13 203 381.311 – –
Total 771726 209 – – –

[49]

GEO GWO GA CSA PSO HS DA
0

50

100

150

200

Three-bar truss

Figure 23. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons (Post hoc) test for the results of the three-bar truss design

problem

5.3 Cantilever beam design

This problem considers finding the height of five attached hollow blocks (to) in the form of a ℎ1 ℎ5

cantilever beam so that the total weight of the structure is minimized. The structure of the cantilever beam is

presented in Figure 24, and the mathematical programming formulation is shown in Equation (16).

co
ns

ta
nt

23456 1 x

x

Figure 24. Cantilever beam design problem

Consider 𝑥 = [𝑥1,𝑥2,𝑥3,𝑥4,𝑥5] = [ℎ1,ℎ2,ℎ3,ℎ4,ℎ5]

Minimize 𝑓(𝑥) = 0.0624(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)

Subject to:

 𝑔1(𝑥) =
61
𝑥3

1
+

37
𝑥3

2
+

19
𝑥3

3
+

7
𝑥3

4
+

1
𝑥3

5
―1 ≤ 0

Where

 0 ≤ 𝑥𝑖 ≤ 100

(16)

Table 15 displays the best results obtained from GEO and other competing algorithms. This table shows that

GEO outperforms GWO, GA, PSO, and HS while providing competitive results compared to CSA and DA

in terms of optimal objective value and constraint violation.

Table 15. Best results obtained from algorithms for the cantilever beam design problem

GEO GWO GA CSA PSO HS DA
 𝑥1 (ℎ1) 6.0156663 6.0109041 6.0439109 6.016015 5.9776207 5.4129259 6.0643788
 𝑥2 (ℎ2) 5.30926 5.3127046 5.298085 5.3090164 5.3779792 5.4129259 5.111031
 𝑥3 (ℎ3) 4.4944048 4.491602 4.4836003 4.4939648 4.4484496 5.4129259 4.7138404
 𝑥4 (ℎ4) 3.5016424 3.4951881 3.4868247 3.5020552 3.5336466 3.6742979 3.4824003
 𝑥5 (ℎ5) 2.1526862 2.1635477 2.161796 2.1526086 2.1450825 2.2792842 2.1387489

 𝑔1 −1.64E−09 −1.93E−05 −3.23E−07 −6.94E−09 −7.39E−04 −3.67E−02 2.00E−15
 (Weight)𝑓 13.365206 13.365384 13.365553 13.365206 13.370881 13.812525 13.388073

[50]

Table 16 shows that the null hypothesis of the Kruskal-Wallis test is rejected for the cantilever beam design

problem. Figure 25 displays the results of the multiple comparisons test and reveals that GEO has

statistically similar performance to GA in this problem.

Table 16. Kruskal-Wallis table for the results of the cantilever beam design problem

Source SS df MS 𝜒2 -value𝑝
Groups 713751.2 6 118958.5 193.3006 5.05E–39
Error 57969.3 203 285.5631 – –
Total 771720.5 209 – – –

GEO GWO GA CSA PSO HS DA
0

50

100

150

200

Cantilever beam

Figure 25. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons (Post hoc) test for the results of the cantilever beam design

problem

5.4 Tension/compression spring design

This problem considers minimizing the total weight of a tension/compression spring, considering diameter (

), mean coil diameter (), and the number of active coils () as the three design variables. The structure of 𝑑 𝐷 𝑃

the tension/compression spring is shown in Figure 26, and the mathematical formulation of this problem is

presented in Equation (17).

D

P P

Figure 26. Tension/compression spring design problem

[51]

Consider 𝑥 = [𝑥1𝑥2,𝑥3] = [𝑑,𝐷,𝑃]

Minimize 𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥2
1

Subject to:

 𝑔1(𝑥) = 1 ―
𝑥3

2𝑥3

71785𝑥4
1

≤ 0

 𝑔2(𝑥) =
4𝑥2

2 ― 𝑥1𝑥2

12566(𝑥3
1 ― 𝑥4

1) ―
1

5108𝑥2
1

≤ 0

 𝑔3(𝑥) = 1 ―
140.45𝑥1

𝑥2
2𝑥3

≤ 0

 𝑔4(𝑥) =
𝑥1 + 𝑥2

1.5 ≤ 0

Where

, , 0.05 ≤ 𝑥1 ≤ 2 0.25 ≤ 𝑥2 ≤ 1.3 2 ≤ 𝑥3 ≤ 15

(17)

Table 17 tabulates the obtained values for design variables (), constraint violations (), and the objective 𝑥𝑗 𝑔𝑖

function for GEO and other algorithms. It is evident in this table that the proposed GEO outperforms GWO,

PSO, HS, and DA while providing competitive results in comparison to GA, and CSA.

Table 17. Best results obtained from algorithms for tension/compression spring design problem

GEO GWO GA CSA PSO HS DA
 𝑥1 (𝑑) 0.0518499 0.0513858 0.0516977 0.0516892 0.050814 0.05 0.0516531
 𝑥2 (𝐷) 0.3605987 0.3493298 0.3569189 0.3567214 0.3359981 0.3106913 0.3558539
 𝑥3 (𝑃) 11.065069 11.743531 11.277477 11.288753 12.622433 15 11.347604

 𝑔1 −2.99E−06 −2.26E−04 −6.76E−07 −4.74E−10 −4.29E−04 −2.69E−03 −6.89E−04
 𝑔2 −1.36E−06 −3.14E−04 −1.78E−05 −8.42E−11 −7.27E−05 −1.67E−02 −8.95E−10
 𝑔3 −4.06E+00 −4.04E+00 −4.05E+00 −4.05E+00 −4.01E+00 −3.85E+00 −4.05E+00
 𝑔4 −7.25E−01 −7.33E−01 −7.28E−01 −7.28E−01 −7.42E−01 −7.60E−01 −7.28E−01

 (Weight) 𝑓 0.0126658 0.0126771 0.0126657 0.0126652 0.012686 0.0132044 0.0126727

Table 18 shows that the null hypothesis of the Kruskal-Wallis test is rejected for the tension/compression

spring design problem. Figure 27 displays the results of the multiple comparisons test and shows that no

other algorithm perform statistically similar to GEO.

Table 18. Kruskal-Wallis table for the results of the tension/compression spring design problem

Source SS df MS 𝜒2 -value𝑝
Groups 630327.2 6 105054.5 170.708 3.18E–34
Error 141390.3 203 696.5039 – –
Total 771717.5 209 – – –

[52]

GEO GWO GA CSA PSO HS DA
0

50

100

150

200

Tension/compression spring

Figure 27. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons (Post hoc) test for the results of the cantilever beam design

problem

5.5 Welded beam design

The objective of this problem is to find optimal values for the thickness of weld (), length (), height (), ℎ 𝑙 𝑡

and thickness of the bar () that minimizes the total cost of manufacturing a welded beam. The structure of 𝑏

the considered design is presented in Figure 28, and the corresponding mathematical formulation is shown in

Equation (18).
h

t

P

Figure 28. The welded beam design problem

[53]

Consider 𝑥 = [𝑥1,𝑥2,𝑥3𝑥4] = [ℎ,𝑙,𝑡,𝑏]

Minimize 𝑓(𝑥) = 1.10471𝑥2
1𝑥2 +0.04811𝑥3𝑥4(14 + 𝑥2)

Subject to:

 𝑔1(𝑥) = 𝜏(𝑥) ― 𝜏max ≤ 0

 𝑔2(𝑥) = 𝜎(𝑥) ― 𝜎max ≤ 0

 𝑔3(𝑥) = 𝛿(𝑥) ― 𝛿max ≤ 0

 𝑔4(𝑥) = 𝑥1 ― 𝑥4 ≤ 0

 𝑔5(𝑥) = 𝑃 ― 𝑃(𝑥) ≤ 0

 𝑔6(𝑥) = 0.125 ― 𝑥1 ≤ 0

 𝑔7(𝑥) = 1.10471𝑥2
1𝑥2 +0.04811𝑥3𝑥4(14 + 𝑥2) ―5 ≤ 0

Where

, , 𝜏(𝑥) = (𝜏′)2 + (𝜏′′)2 +
𝑙𝜏′𝜏′′

0.25(𝑙2 + (ℎ + 𝑡)2) 𝜏′ =
6000

2ℎ𝑙 𝜏′′ =
6000(14 + 0.5𝑙) 0.25(𝑙2 + (ℎ + 𝑡)2)

2[0.707ℎ𝑙(𝑙2

12 + 0.25(ℎ + 𝑡)2)]
, 𝜎(𝑥) =

504000
𝑡2𝑏 𝛿(𝑥) =

65856000
(30 × 106)𝑏𝑡3

, 0.1 ≤ 𝑥1,𝑥4 ≤ 2 0.1 ≤ 𝑥2,𝑥3 ≤ 10

(18)

Table 19 tabulates the results obtained by solving this problem using GEO and other competing algorithms.

This table shows that GEO outperforms GWO, GA, PSO, HS, and DA, and provides competitive results

compared to CSA. This confirms the ability of the proposed GEO to solve problems with multiple nonlinear

constraints efficiently.

Table 19. Best results obtained from algorithms for the welded beam design problem

GEO GWO GA CSA PSO HS DA
 𝑥1 (ℎ) 0.2443688 0.2443158 0.2443271 0.2443689 0.243871 0.1585629 0.2411605
 𝑥2 (𝑙) 3.0630204 3.0652528 3.0635288 3.0630243 3.0648441 7.7555863 2.9106552
 𝑥3 (𝑡) 8.2914827 8.2924051 8.2931239 8.2914718 8.305948 8.2746943 8.6619439
 𝑥4 (𝑏) 0.2443689 0.2443838 0.2445089 0.244369 0.2447052 0.2547101 0.2419407

 𝑔1 −6.09E−04 −6.08E+00 −2.44E+00 −4.62E−05 −5.19E+00 −2.81E+03 −2.00E−03
 𝑔2 −7.24E−02 −8.57E+00 −2.91E+01 −3.39E−04 −1.46E+02 −1.10E+03 −2.24E+03
 𝑔3 −2.34E−01 −2.34E−01 −2.34E−01 −2.34E−01 −2.34E−01 −2.35E−01 −2.36E−01
 𝑔4 −8.66E−08 −6.79E−05 −1.82E−04 −1.05E−08 −8.34E−04 −9.61E−02 −7.80E−04
 𝑔5 −1.64E−03 −1.56E+00 −1.11E+01 −3.20E−05 −3.21E+01 −7.85E+02 −9.09E−13
 𝑔6 −1.19E−01 −1.19E−01 −1.19E−01 −1.19E−01 −1.19E−01 −3.36E−02 −1.16E−01
 𝑔7 −3.27E+00 −3.27E+00 −3.27E+00 −3.27E+00 −3.27E+00 −2.77E+00 −3.23E+00

 (Cost)𝑓 1.8653598 1.8659235 1.8666563 1.8653589 1.8700306 2.4214036 1.891987

Table 20 shows that the null hypothesis of the Kruskal-Wallis test is rejected for the welded beam design

problem. Figure 29 displays the results of the multiple comparisons test and shows that GEO performs

statistically similar to GA and CSA.

Table 20. Kruskal-Wallis table for the results of the welded beam design problem

Source SS df MS 𝜒2 -value𝑝
Groups 661891 6 110315.2 179.2554 4.88E–36

[54]

Error 109830.5 203 541.0369 – –
Total 771721.5 209 – – –

GEO GWO GA CSA PSO HS DA
0

50

100

150

200

250
Welded beam

Figure 29. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons (Post hoc) test for the results of the welded beam design

problem

6 Conclusion

This work proposed a new swarm-intelligence metaheuristic algorithm for solving optimization problems,

called Golden Eagle Optimizer (GEO). The algorithm starts off with an initial population and mimics the

hunting procedure of golden eagles to improve the fitness of the population and find the optimum.

Particularly, GEO is based on the fact that golden eagles’ behavior in any instance during the hunting flight

is influenced by the propensity to attack and propensity to cruise. Golden eagles memorize the best preys

they have visited and sometimes communicate prey’s location with other eagles. The mathematical

equations proposed for GEO simulate attack and cruise vectors to address exploitation and exploitation for

solving optimization problems. Besides, the multi-objective version of the algorithm, called Multi-Objective

Golden Eagle Optimizer (MOGEO), was proposed based on the main concepts of GEO with some

modifications. The modification was implemented on prey selection, best solution preservation mechanism

(external archive), and archive handling. MATLAB toolboxes and the source code are developed for GEO

and MOGEO and publicly available.

To certify the performance and efficiency of the proposed algorithms, GEO was tested on 33 benchmark

problems from different classes, including unimodal, multimodal, and composite benchmark functions. The

CEC2017 test suite was utilized for composite benchmark functions. Results were compared to that of six

other well-known metaheuristic algorithms via different statistical measures. It was revealed that GEO is

capable of exploring the landscape through intense and abrupt movements in the initial stages of the search

and converge toward the promising areas by exploiting the best solutions found over the course of iterations.

GEO outperformed other algorithms in the majority of the benchmark problems while providing competitive

results in the others. GEO was also used to solve real-world engineering problems, where it showed

promising performance. The results indicate that GEO is able to find the global optimum of optimization

problems with challenging and unknown search spaces.

MOGEO’s performance was tested using the CEC2009 and DTLZ test suite, which are specially designed

for testing multi-objective algorithms. The results of MOGEO was compared to that of four other well-

known multi-objective algorithms. MOGEO was able to provide competitive results, and in many cases,

[55]

outperform the other algorithms in approximating the true Pareto front in challenging multi-objective

problems.

It worths noting that the proposed GEO and MOGEO algorithms treat single- and multi-objective problems

as a black box; therefore, they can be applied to any type of optimization problems, including NP-hard ones,

as long as the problem is properly formulated. In addition, since the proposed algorithms are able to solve

optimization problems with continuous variables, some modifications may be needed for applying the GEO

and MOGEO on problems with non-continuous decision space. There are opens avenues for future

researches to proposed suitable operators to enhance the performance of the proposed algorithms on

different types of problems. It is also perceived from the experiments that the introduction of the cruise

vector provides good exploration in comparison to Exploitation capabilities in GEO and MOGEO. This

enables these algorithms to perform better on problems with unknown or more complex landscapes than

unimodal functions. Future studies are encouraged to expand the concept of exploitation of GEO in

unimodal functions. Therefore, the area for improvement of this algorithm is to modify the exploitation

aspects of GEO.

Future works can also develop new mechanisms for the algorithm or enhance the existing ones for

performance improvement. New prey selection mechanisms can be proposed to enhance the performance of

the existing approach for both GEO and MOGEO based on, for example, statistical probability functions.

For randomizing the attack, cruise, and the step vector, a uniform distribution is used in this work, which can

be extended to other approaches for randomization, e.g., Lévy flights.

References
[1] S. Mirjalili, The Ant Lion Optimizer, Advances in Engineering Software. 83 (2015) 80–98.

https://doi.org/10.1016/j.advengsoft.2015.01.010.
[2] R.G. Rakotonirainy, J.H. van Vuuren, Improved metaheuristics for the two-dimensional strip packing problem, Applied Soft

Computing. (2020) 106268. https://doi.org/10.1016/j.asoc.2020.106268.
[3] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Computat. 1 (1997) 67–82.

https://doi.org/10.1109/4235.585893.
[4] S.-R. Massan, A.I. Wagan, M.M. Shaikh, A new metaheuristic optimization algorithm inspired by human dynasties with an

application to the wind turbine micrositing problem, Applied Soft Computing. 90 (2020) 106176.
https://doi.org/10.1016/j.asoc.2020.106176.

[5] O. Bozorg-Haddad, M. Solgi, H.A. Loaiciga, Meta-heuristic and evolutionary algorithms for engineering optimization, John
Wiley & Sons, Hoboken, NJ, 2017.

[6] A. Husseinzadeh Kashan, R. Tavakkoli-Moghaddam, M. Gen, Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic
algorithm: An effective algorithm with new evolutionary operators for global optimization, Computers & Industrial
Engineering. 128 (2019) 192–218. https://doi.org/10.1016/j.cie.2018.12.033.

[7] D.E. Goldberg, J.H. Holland, Genetic Algorithms and Machine Learning, Machine Learning. 3 (1988) 95–99.
https://doi.org/10.1023/A:1022602019183.

[8] S. Das, P.N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE Trans. Evol. Computat. 15 (2011) 4–
31. https://doi.org/10.1109/TEVC.2010.2059031.

[9] J. Zhang, M. Xiao, L. Gao, Q. Pan, Queuing search algorithm: A novel metaheuristic algorithm for solving engineering
optimization problems, Applied Mathematical Modelling. 63 (2018) 464–490. https://doi.org/10.1016/j.apm.2018.06.036.

[10] Y. Zhang, Z. Jin, Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization
problems, Expert Systems with Applications. 148 (2020) 113246. https://doi.org/10.1016/j.eswa.2020.113246.

[11] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical
design optimization problems, Computer-Aided Design. 43 (2011) 303–315. https://doi.org/10.1016/j.cad.2010.12.015.

[12] W. Zhao, L. Wang, Z. Zhang, A novel atom search optimization for dispersion coefficient estimation in groundwater, Future
Generation Computer Systems. 91 (2019) 601–610. https://doi.org/10.1016/j.future.2018.05.037.

[56]

[13] F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: A novel
physics-based algorithm, Future Generation Computer Systems. 101 (2019) 646–667.
https://doi.org/10.1016/j.future.2019.07.015.

[14] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm – A novel metaheuristic optimization method
for solving constrained engineering optimization problems, Computers & Structures. 110–111 (2012) 151–166.
https://doi.org/10.1016/j.compstruc.2012.07.010.

[15] S. Rahmanzadeh, M.S. Pishvaee, Electron radar search algorithm: a novel developed meta-heuristic algorithm, Soft Comput.
(2019). https://doi.org/10.1007/s00500-019-04410-8.

[16] A.F. Nematollahi, A. Rahiminejad, B. Vahidi, A novel physical based meta-heuristic optimization method known as
Lightning Attachment Procedure Optimization, Applied Soft Computing. 59 (2017) 596–621.
https://doi.org/10.1016/j.asoc.2017.06.033.

[17] A. Husseinzadeh Kashan, A new metaheuristic for optimization: Optics inspired optimization (OIO), Computers &
Operations Research. 55 (2015) 99–125. https://doi.org/10.1016/j.cor.2014.10.011.

[18] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences. 179 (2009)
2232–2248. https://doi.org/10.1016/j.ins.2009.03.004.

[19] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm,
Knowledge-Based Systems. 191 (2020) 105190. https://doi.org/10.1016/j.knosys.2019.105190.

[20] A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: Thermal exchange optimization, Advances in
Engineering Software. 110 (2017) 69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014.

[21] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural
Comput & Applic. 27 (2016) 495–513. https://doi.org/10.1007/s00521-015-1870-7.

[22] A. Tabari, A. Ahmad, A new optimization method: Electro-Search algorithm, Computers & Chemical Engineering. 103
(2017) 1–11. https://doi.org/10.1016/j.compchemeng.2017.01.046.

[23] A. Kaveh, V.R. Mahdavi, Colliding bodies optimization: A novel meta-heuristic method, Computers & Structures. 139
(2014) 18–27. https://doi.org/10.1016/j.compstruc.2014.04.005.

[24] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge-Based Systems. 96 (2016) 120–
133. https://doi.org/10.1016/j.knosys.2015.12.022.

[25] A.F. Nematollahi, A. Rahiminejad, B. Vahidi, A novel meta-heuristic optimization method based on golden ratio in nature,
Soft Comput. 24 (2020) 1117–1151. https://doi.org/10.1007/s00500-019-03949-w.

[26] H. Salimi, Stochastic Fractal Search: A powerful metaheuristic algorithm, Knowledge-Based Systems. 75 (2015) 1–18.
https://doi.org/10.1016/j.knosys.2014.07.025.

[27] M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm intelligence for dynamic optimization: Algorithms and applications,
Swarm and Evolutionary Computation. 33 (2017) 1–17. https://doi.org/10.1016/j.swevo.2016.12.005.

[28] A.P. Piotrowski, M.J. Napiorkowski, J.J. Napiorkowski, P.M. Rowinski, Swarm Intelligence and Evolutionary Algorithms:
Performance versus speed, Information Sciences. 384 (2017) 34–85. https://doi.org/10.1016/j.ins.2016.12.028.

[29] Z.M. Zahedi, R. Akbari, M. Shokouhifar, F. Safaei, A. Jalali, Swarm intelligence based fuzzy routing protocol for clustered
wireless sensor networks, Expert Systems with Applications. 55 (2016) 313–328. https://doi.org/10.1016/j.eswa.2016.02.016.

[30] H. Yapici, N. Cetinkaya, A new meta-heuristic optimizer: Pathfinder algorithm, Applied Soft Computing. 78 (2019) 545–
568. https://doi.org/10.1016/j.asoc.2019.03.012.

[31] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications,
Future Generation Computer Systems. 97 (2019) 849–872. https://doi.org/10.1016/j.future.2019.02.028.

[32] M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization: Squirrel search algorithm, Swarm and
Evolutionary Computation. 44 (2019) 148–175. https://doi.org/10.1016/j.swevo.2018.02.013.

[33] G. Dhiman, V. Kumar, Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering
problems, Knowledge-Based Systems. 165 (2019) 169–196. https://doi.org/10.1016/j.knosys.2018.11.024.

[34] S. Shadravan, H.R. Naji, V.K. Bardsiri, The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving
constrained engineering optimization problems, Engineering Applications of Artificial Intelligence. 80 (2019) 20–34.
https://doi.org/10.1016/j.engappai.2019.01.001.

[35] V. Hayyolalam, A.A. Pourhaji Kazem, Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving
engineering optimization problems, Engineering Applications of Artificial Intelligence. 87 (2020) 103249.
https://doi.org/10.1016/j.engappai.2019.103249.

[36] G. Dhiman, V. Kumar, Emperor penguin optimizer: A bio-inspired algorithm for engineering problems, Knowledge-Based
Systems. 159 (2018) 20–50. https://doi.org/10.1016/j.knosys.2018.06.001.

[37] E. Jahani, M. Chizari, Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm,
Applied Soft Computing. 62 (2018) 987–1002. https://doi.org/10.1016/j.asoc.2017.09.035.

[38] S. Saremi, S. Mirjalili, A. Lewis, Grasshopper Optimisation Algorithm: Theory and application, Advances in Engineering
Software. 105 (2017) 30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004.

[39] G. Dhiman, V. Kumar, Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering
applications, Advances in Engineering Software. 114 (2017) 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014.

[40] F. Fausto, E. Cuevas, A. Valdivia, A. González, A global optimization algorithm inspired in the behavior of selfish herds,
Biosystems. 160 (2017) 39–55. https://doi.org/10.1016/j.biosystems.2017.07.010.

[41] S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems, Advances in Engineering Software. 114 (2017) 163–191.
https://doi.org/10.1016/j.advengsoft.2017.07.002.

[42] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing, Science. 220 (1983) 671–680.
https://doi.org/10.1126/science.220.4598.671.

[57]

[43] F. Glover, Tabu Search—Part I, ORSA Journal on Computing. 1 (1989) 190–206. https://doi.org/10.1287/ijoc.1.3.190.
[44] L. Davis, Bit-climbing, representational bias, and test suit design, Proc. Intl. Conf. Genetic Algorithm, 1991. (1991) 18–23.
[45] Golden eagle, Wikipedia. (2020). https://en.wikipedia.org/w/index.php?title=Golden_eagle&oldid=943393767 (accessed

March 2, 2020).
[46] J.D. Tack, B.R. Noon, Z.H. Bowen, B.C. Fedy, Ecosystem processes, land cover, climate, and human settlement shape

dynamic distributions for golden eagle across the western US, Anim Conserv. 23 (2020) 72–82.
https://doi.org/10.1111/acv.12511.

[47] H. Tikkanen, S. Rytkönen, O.-P. Karlin, T. Ollila, V.-M. Pakanen, H. Tuohimaa, M. Orell, Modelling golden eagle habitat
selection and flight activity in their home ranges for safer wind farm planning, Environmental Impact Assessment Review. 71
(2018) 120–131. https://doi.org/10.1016/j.eiar.2018.04.006.

[48] R. Veldman, Golden eagle, (2018). https://pixabay.com/photos/golden-eagle-bird-raptor-eagle-4780267/ (accessed March 4,
2020).

[49] Golden eagles in human culture, Wikipedia. (2020).
https://en.wikipedia.org/w/index.php?title=Golden_eagles_in_human_culture&oldid=942701659 (accessed April 12, 2020).

[50] Eagle (heraldry), Wikipedia. (2020). https://en.wikipedia.org/w/index.php?title=Eagle_(heraldry)&oldid=943863753
(accessed April 12, 2020).

[51] Hunting with eagles, Wikipedia. (2020). https://en.wikipedia.org/w/index.php?title=Hunting_with_eagles&oldid=940982958
(accessed April 12, 2020).

[52] Y. Cui, Z. Geng, Q. Zhu, Y. Han, Review: Multi-objective optimization methods and application in energy saving, Energy.
125 (2017) 681–704. https://doi.org/10.1016/j.energy.2017.02.174.

[53] M. Khoroshiltseva, D. Slanzi, I. Poli, A Pareto-based multi-objective optimization algorithm to design energy-efficient
shading devices, Applied Energy. 184 (2016) 1400–1410. https://doi.org/10.1016/j.apenergy.2016.05.015.

[54] A. Martín, O. Schütze, Pareto Tracer: a predictor–corrector method for multi-objective optimization problems, Engineering
Optimization. 50 (2018) 516–536. https://doi.org/10.1080/0305215X.2017.1327579.

[55] C.A. Coello Coello, M.S. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in: Proceedings
of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), IEEE, Honolulu, HI, USA, 2002: pp.
1051–1056. https://doi.org/10.1109/CEC.2002.1004388.

[56] S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, I. Aljarah, Grasshopper optimization algorithm for multi-objective
optimization problems, Appl Intell. 48 (2018) 805–820. https://doi.org/10.1007/s10489-017-1019-8.

[57] S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving
engineering problems, Appl Intell. 46 (2017) 79–95. https://doi.org/10.1007/s10489-016-0825-8.

[58] S. Mirjalili, S. Saremi, S.M. Mirjalili, L. dos S. Coelho, Multi-objective grey wolf optimizer: A novel algorithm for multi-
criterion optimization, Expert Systems with Applications. 47 (2016) 106–119. https://doi.org/10.1016/j.eswa.2015.10.039.

[59] Y. Zhang, D. Gong, J. Sun, B. Qu, A decomposition-based archiving approach for multi-objective evolutionary optimization,
Information Sciences. 430–431 (2018) 397–413. https://doi.org/10.1016/j.ins.2017.11.052.

[60] L. Cai, S. Qu, G. Cheng, Two-archive method for aggregation-based many-objective optimization, Information Sciences. 422
(2018) 305–317. https://doi.org/10.1016/j.ins.2017.08.078.

[61] A. Ahmadi, L. Tiruta-Barna, F. Capitanescu, E. Benetto, A. Marvuglia, An archive-based multi-objective evolutionary
algorithm with adaptive search space partitioning to deal with expensive optimization problems: Application to process eco-
design, Computers & Chemical Engineering. 87 (2016) 95–110. https://doi.org/10.1016/j.compchemeng.2015.12.008.

[62] L. Chen, Q. Li, X. Zhao, Z. Fang, F. Peng, J. Wang, Multi-population coevolutionary dynamic multi-objective particle swarm
optimization algorithm for power control based on improved crowding distance archive management in CRNs, Computer
Communications. 145 (2019) 146–160. https://doi.org/10.1016/j.comcom.2019.06.009.

[63] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimization: NSGA-II, in: M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, H.-P. Schwefel (Eds.),
Parallel Problem Solving from Nature PPSN VI, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000: pp. 849–858.
https://doi.org/10.1007/3-540-45356-3_83.

[64] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software. 69 (2014) 46–61.
https://doi.org/10.1016/j.advengsoft.2013.12.007.

[65] A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: Crow search
algorithm, Computers & Structures. 169 (2016) 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001.

[66] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural
Networks, IEEE, Perth, WA, Australia, 1995: pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

[67] Z.W. Geem, J.H. Kim, G.V. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, SIMULATION. 76
(2001) 60–68. https://doi.org/10.1177/003754970107600201.

[68] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and
multi-objective problems, Neural Comput & Applic. 27 (2016) 1053–1073. https://doi.org/10.1007/s00521-015-1920-1.

[69] N.H. Awad, M.Z. Ali, P.N. Suganthan, J.J. Liang, B.Y. Qu, Problem Definitions and Evaluation Criteria for the CEC 2017
Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, (2017).
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm (accessed April 13, 2020).

[70] X. Qi, Y. Zhu, H. Zhang, A new meta-heuristic butterfly-inspired algorithm, Journal of Computational Science. 23 (2017)
226–239. https://doi.org/10.1016/j.jocs.2017.06.003.

[71] Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization Test Instances for the CEC
2009 Special Session and Competition, (2009). https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC09-MOEA/CEC09-
MOEA.htm (accessed April 13, 2020).

[58]

[72] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Test Problems for Evolutionary Multiobjective Optimization, in: A.
Abraham, L. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization, Springer-Verlag, London, 2005: pp. 105–
145. https://doi.org/10.1007/1-84628-137-7_6.

[73] D.A. Van Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithm research: A history and analysis, Citeseer, 1998.
[74] M.R. Sierra, C.A. Coello Coello, Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ∈-

Dominance, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005: pp. 505–519. https://doi.org/10.1007/978-3-540-31880-4_35.

[75] X.-S. Yang, M. Karamanoglu, Swarm Intelligence and Bio-Inspired Computation, in: Swarm Intelligence and Bio-Inspired
Computation, Elsevier, 2013: pp. 3–23. https://doi.org/10.1016/B978-0-12-405163-8.00001-6.

[76] X.-S. Yang, Nature-inspired optimization algorithms, First edition, Elsevier, Amsterdam; Boston, 2014.

[59]

Abdolkarim Mohammadi-Balani: Software, Writing - Original Draft, Visualization. Mahmoud Dehghan

Nayeri: Conceptualization, Validation, Writing - Review & Editing, Supervision. Adel Azar:

Conceptualization, Writing - Review & Editing. Mohammadreza Taghizadeh-Yazdi: Methodology,

Validation.

