
MARINE AUTONOMOUS EXPLORATION USING A LIDAR AND SLAM

Einar S. Ueland ∗
Centre for Autonomous

Marine Operations and Systems (NTNU AMOS)
Norwegian University of Science

and Technology (NTNU)
Department of Marine Technology

NO-7491 Trondheim, Norway
Email: einar.s.ueland@ntnu.no

Roger Skjetne
Andreas R. Dahl

Centre for Autonomous Marine
Operations and Systems (AMOS)
Norwegian University of Science

and Technology (NTNU)
Department of Marine Technology

NO-7491 Trondheim, Norway

ABSTRACT
This paper presents the implementation of a 2D-lidar to a

model-scale surface vessel, and the design of a control system
that makes the vessel able to perform autonomous exploration
of a small-scale marine environment by the use of the lidar and
SLAM. This includes a presentation and discussion of experi-
mental results. The completion of this system has involved the
development of a suitable control system that merges exploration
strategies, path planners, a motion controller, and a strategy for
generating controller setpoints. The system was implemented on
the Robot Operating System platform, which made it possible to
utilize open-source algorithms for state of the art SLAM.

INTRODUCTION
Autonomous exploration by the use of lidars on land-based

robots has been successfully performed in a number of scenar-
ios, see for example [1]. Lidars have been applied on marine
vessels, such as in [2], which uses a 3D lidar, yet, it is hard to
find examples where lidars have been implemented on marine
surface vessels for the purpose of exploring its environment au-
tonomously. In fact, marine autonomous exploration using a 2D
lidar and simultaneous localization and mapping (SLAM) has to
the authors best knowledge not been performed before.

An analog to the marine surface vessel studied in this report

∗Address all correspondence to this author.

is ground vehicles where 2D lidars have been used extensively. In
particular, several sources describe mapping by the use of lidars
installed on wheeled robots by the use of the Robot Operating
System (ROS) [3] and open source SLAM software, see for ex-
ample [4]. These cases served as an inspiration for the main au-
thors master project [5], from which this paper is presenting the
main results. To ease the implementation of open source map-
ping algorithms, ROS was chosen as the programming platform
of the system reviewed in this paper. The ROS platform further
supports a simple integration with MATLAB/Simulink [6] where
most of the control system has been designed.

The development of a system capable of exploring its envi-
ronment can be viewed as a part of a recent effort by the marine
community towards the development of autonomous, unmanned
marine vessels. An example showing this effort is the European
research project MUNIN [7].

The system and the experiments reviewed in this paper are
limited to a controlled environment where there are no waves or
current present. In addition walls and hinders used in the exper-
iments are static, and in most cases vertical. Finally, the opera-
tions are performed in small-scale, meaning that there are always
some objects within the range of the lidar. For these reasons, it is
expected that the resulting system needs to be further developed
in order for it to function at the open sea. However, given that
these limitations can be overcome, several potential applications
such as safe harbor-parking for smaller vessels and various oper-

1 Copyright © 2017 ASME

Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
OMAE2017

June 25-30, 2017, Trondheim, Norway

OMAE2017-61880

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

ations that require precise navigation relative to marine structures
and can be imagined.

OBJECTIVES
This paper aims at providing an answer to the following

question:
Given the installation of a lidar on an unmanned surface vessel,
how should a guidance, navigation, and control system be de-
signed, making the vessel capable of efficient and autonomous
exploration?

In order for the vessel to perform this exploration, it is vital
it can handle the following four competences: (Italic font mark
the section in the paper where the item is addressed)

1. Build a map, while simultaneously locating itself within it.
(SLAM)

2. Evaluate which locations it should move to in order to fulfill
its mapping objective. (Exploration Strategy)

3. Plan obstacle-free paths to desired locations. (Path Planner)
4. Follow the planned path based on sensed data and inputs to

its actuators. (Motion Control and Velocity Control Law)

The work presented focuses on designing a setup that per-
forms well in experiments and it makes an effort of demonstrat-
ing the design of the system as well as the experimental results.

MAPPING OF ENVIRONMENT
The area that the vessel is operating in is to be mapped in the

2D, horizontal plane, by the use of a lidar sensor and mapping
algorithms.

Lidars
A lidar, which is the sensor device to be utilized for map-

ping in this paper, is a remote sensing device that functions by
emitting a laser pulse that is reflected by the object it reaches.
The returning signal is sampled by vision acquisition embedded
in the lidar. The lidar measures the time that the light uses to
return to it, and applies this information to produce a point cloud
that can be utilized for mapping and localization.

Lidars are recognized for high accuracy, allowing for fast
data acquisition and for being independent of ambient light. Fig-
ure 1 illustrates how the 2D lidar applied in this thesis function.
It emits a laser pulse that is reflected by a wall and sampled by
vision acquisition in the lidar. This allows the system to sense its
environment in the 2D horizontal plane.

SLAM
SLAM is the problem of creating and updating a map of

the unknown environment, while simultaneously determining the
position of the object within it.

FIGURE 1: 2D LIDAR. COURTESY OF [8]

There are several packages available in the Robot operating
system that can perform SLAM by utilizing a lidar range-cloud.
See [9] for an evaluation of the most popular packages. Since the
Hector-SLAM package [10] is popular, well tested and does not
require odometry data, this is the package that has been chosen to
perform SLAM on the implemented system. The SLAM package
is implemented without any changes in the internal algorithms.
For a more detailed discussion on the SLAM this paper refers to
[11] which discuss strategies and common algorithms for solving
the problem.

Map Representation
The maps generated from the Hector-SLAM algorithms are

represented as probabilistic occupancy grids, a data structure
where the area which the vessel operates in is discretized into
a grid. The occupancy grids are further characterized by a given
grid size and resolution.

In the control system of the vessel, the occupancy grids gen-
erated from the SLAM algorithms are imported to a MATLAB
script where each cell is interpreted as either an occupied cell, a
free cell or an unexplored cell. Occupancy grids are a convenient
form to represent detailed maps, and can be recognized in figures
throughout this paper.

EXPERIMENTAL PLATFORM
The system described in this paper is implemented on the

model-scale surface vessel that can be seen in Fig. 2. The ves-
sel is round and cone-like, with diameters 548 mm and 398 mm
at the top and bottom respectively. The vessel is installed with
three maneuverable thrusters, the shaft of which are all placed
on the circumference of a circle about the center of origin with
radius 0.138 m , and they are placed with a spacing of 120 deg,
i.e. symmetrically. This means that the vessel can maneuver in
both surge and sway efficiently. This is an advantage for this
project, as it means that the vessel’s heading does not need to be
considered as a parameter in the path-planning process.

As mentioned in the introduction, the control system is im-

2 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

FIGURE 2: VESSEL USED IN EXPERIMENTS.

plemented on ROS. This paper will repeatedly refer to ROS
nodes, which is separate processes that perform computations,
and ROS topics, which are name buses which nodes use to ex-
change messages.

If the model vessel were to have a more conventional ship
design, mainly restricted to movements in surge direction, it
seems reasonable that the implementation of a separate heading
controller with a steering law similar to that of [12, Section 10.3],
combined with a turning maneuver for handling sharp changes in
the desired heading angle would overcome the additional chal-
lenge of heading control. Thereby creating a system able to per-
form operations similar to those presented in this paper.

Hardware Architecture
The installed components on the system are mostly low-cost

and readily available for consumers. Development of similar
projects can, therefore, be expected to be performed at a rela-
tively low cost. The hardware architecture including signal flow
between components can be seen in Fig. 3.

The single-board computer Raspberry Pi 2 (RP2) running
ROS on Ubuntu, is functioning as the onboard computer, capable
of running multiple ROS nodes. The embedded circuit Arduino
Mega, connected to RP2 via USB and is responsible for trans-
mitting appropriate signals to the actuators. The lidar RPLIDAR
is mounted on the vessel lid, is also connected to the RP2 via
USB. The vessel is installed with three azimuth thrusters, each
of which is driven by a separate Torpedo 800 motor. An 11.1V,
three cell 640 mAh lithium polymer battery from Traxxas serves
as the vessels power supply. A computer is further connected to
the system via the local Wi-Fi in the basin. Finally, three Hall ef-
fect sensors are implemented, measuring the rotational speed of
the thrusters, offering an opportunity for RPM feedback on the
individual motors.

FIGURE 3: SIGNAL AND POWER FLOW ON THE VES-
SEL.

FIGURE 4: CONTROL LOOP OF IMPLEMENTED SYS-
TEM.

GUIDANCE, NAVIGATION AND CONTROL
Guidance navigation and control (GNC) refer to the system

that process information from its environment and subsequent
control the movement of a craft. Common strategies and algo-
rithms for marine GNC systems are comprehensively reviewed
in [12].

Figure 4 display the control loop of the implemented sys-
tem and what information the individual components transmit
between each other. This loop constitutes the GNC system of the
vessel and is responsible for making the vessel achieve its control
objective.

3 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

(a)

(b) (c)

FIGURE 5: FRONTIER BASED EXPLORATION.

Motion Control
The goal of the implemented motion controller is to make

the vessel able to track a reference setpoint. The gray boxes in
Fig. 4 represent the motion control system of the vessel, and is
implemented as separate ROS-node. The motion controller con-
sists of a nonlinear observer that estimates the position and ve-
locity of the vessel, designed according to [12, Section 11.4.1],
a PD controller, a third order reference model that filters the de-
sired position such that it is smooth and within the limits of the
vessel’s capabilities, and a thrust allocation scheme responsible
for acting the desired generalized force vector on vessel.

Exploration Strategy
The frontier based-exploration strategy has been imple-

mented on the system. In this approach, the robot should al-
ways move to frontiers (edges) between explored and unexplored
map [13]. The method is recognized for being relatively easy to
implement, for its reliability, and for being efficient in mapping
new territory.

The following steps summarize how the exploration strategy
is implemented to the system:

1. Identify explored cells that neighbors an unexplored cell as
a frontier cell.

2. Use a path-planner to identify the frontier that can be
reached with the lowest cost. The path planner generates
a path to the frontier that is to be followed

3. Allow for the vessel to start following the path and repeat
the process

0

10

20

30

H
eu

ris
tic

 v
al

ue

Goal

FIGURE 6: HEURISTIC VALUE, EXAMPLE.

Figure 5 illustrates how the simulated vessel utilizes the
frontier-based exploration scheme. The simulated scenario is ex-
plored methodically in an efficient manner.

Path Planner
In order to navigate to locations determined by the explo-

ration strategy, the A* (A star) search algorithm [14] has been
implemented. The algorithm is implemented, using the center of
each grid cell as a separate node that the path can visit. The al-
gorithm associates movement between neighboring nodes with a
cost and is able to find the lowest cost path between two arbitrary
nodes in the grid.

In planning, the algorithm utilizes the heuristic value, which
estimates the cost of the cheapest path from the investigated node
to the goal. In this project, the heuristic value of each cell is set
such that it equals the euclidean distance from the cell to the near-
est goal node. The algorithm is always investigating the node that
has the lowest combined cost and heuristic value, i.e., it prefers
looking for paths where the heuristic value is low. An example
the heuristic values in a scenario is illustrated in Fig. 6.

The algorithm is not reviewed in detail in this paper, how-
ever, the following should be noted about it:

1. The A* search algorithm is complete, meaning that if there
exists a path to the goal node it will find it.

2. The method is admissible, meaning that it finds a best path if
the heuristic does not over-predict the actual minimum cost
of reaching the goal.

3. The method solves the problem by investigating the most
promising nodes first, classifying it as a best-first-search al-
gorithm.

4 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Handling of Multiple Goal Nodes. Since the explo-
ration method applied can yield multiple goal candidates (fron-
tiers), the search algorithm should be able to handle multiple goal
nodes. In the implemented algorithm this is realized by adjusting
the heuristic such that it equals the Euclidean distance from each
cell to the nearest goal node. The first goal candidate the method
opens during a search is now identified as the closest goal node,
from where the path is retraced back to start.

Path Orientations. In the standard A* search in occu-
pancy grids, only the eight neighboring tiles are investigated
when expanding paths from a node. This restricts the orienta-
tion of the planned path to eight directions, in increments of 45
degrees, which again leads to suboptimal paths.

A way to circumvent the restriction is to allow nodes to con-
nect to nodes that are more than one tile away. Figure 7 illustrates
which nodes are investigated when expanding the path, for con-
nection distances between 1 and 4. Each connecting line in this
figure represents a possible heading that the calculated path can
have. As is evident from the figure, increasing the connecting
distance quickly increase the number of possible directions. A
connecting distance of one, two, three and four yields 8, 16, 32
and 48 possible orientations respectively.

While larger connecting distances increase the number of
possible orientations, and in general lead to better and shorter
paths, it quickly increases the complexity of calculations and thus
also computation times.

Figure 8 illustrates how the calculated paths differ when us-
ing a connecting distance of one and four (the connecting dis-
tance of four is applied in the experiments reviewed in this pa-
per). As expected, the calculated path using a connecting dis-
tance of four is both shorter and smoother than that of one.

Weighting of Cost-map. The algorithm is imple-
mented with a scheme for weighting the crossing of cells such
that the vessel prefers to keep a distance from objects. The
weighting w(s) of each cell is given according to the following
formula:

w(s) = 1+
5

0.1+dobj
(1)

Where dobj is the euclidean distance from the node to the clos-
est occupied cell. The formula has been tuned to suit the vessel
objective and dynamics.

Figure 9 illustrates a weighted grid, and the resulting path
found in it. In general, paths using the weighted grid are satis-
fying and shown to keep a reasonable distance to objects when
possible.

(a) (b)

(c) (d)

FIGURE 7: GRID CONNECTIONS USING DIFFERENT
CONNECTING DISTANCES.

Goal
Path, Connection distance=1
Vessel position
Path, Connection distance=4

FIGURE 8: PLANNED PATH, CONNECTING DISTANCE
OF ONE AND FOUR. .

Map Processing
In order not to collide, all cells within the area that the vessel

spans to need to be free. In addition, cells in an additional safety
distance around the vessel should be free, such that it has room
to maneuver. To ensure this, all cells within a predefined distance
to an occupied cell are considered inaccessible and thus labeled
as occupied. This process is called inflating the map. In the
experiments seen in this paper, the inflation distance is set to 0.4
m.

In addition to the inflation process, the map is processed by
reducing free cells to only reachable cells, and by assuming that

5 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

FIGURE 9: PATH IN WEIGHTED GRID.

cells not identified by the SLAM algorithms in the close vicinity
of the vessel are free.

Figure 10 illustrates both the steps of the map processing
described in this section (a-d) and the previously discussed path
generation process (e-h). The figure is thus serving as an illus-
tration of the full process from importing the map from Hector-
SLAM to the generating a path for the vessel to follow.

Velocity Control Law
The velocity of the vessel is controlled by adjusting the set-

point that the motion controller receives. This procedure is in this
paper labeled as a velocity control law. Together with the explo-
ration strategy and the path-planner, this constitutes the guidance
and navigation block seen in Fig. 4

A list consisting of the first 128 discrete positions in the
planned path is sent from the exploration node to the ROS-
framework after each iteration. Based on this list, the vessel’s
position, and the nearest object, as recognized by the lidar, the
velocity control law generates the controller setpoints. The ROS
node that performs this operation is running independently on the
exploration node, which allows the commanded setpoints to be
updated at a high frequency, even if the path planner only updates
the chosen path every few second.

The velocity control law can be described as follows:

1. Rediscretizing Path. The imported path vector is re-
discretized to an array with a step size of rq = 0.01m. The
discrete points are labeled pk,k ∈ (1,2, · · · ,N). In Fig. 11
the re-discretization is performed between (a) and (b).

2. Identify Closest Point on Chosen Path. The discrete point
number l, that is closest to the vessel’s current position is

(a) Map as imported from Hector-
SLAM

(b) Inflated map

(c) Map reduced to reachable cells
(d) Non-visible cells within a dis-
tance
of 3 m assumed explored and free

(e) Heuristic value for pathfinder (f) Weight of cells for pathfinder

(g) Frontiers indicated (h) Chosen path

FIGURE 10: MAP PROCESSING AND PATH GENERA-
TION STEPS.

identified. This is the yellow dot in Fig. 11b

3. Generate Setpoint Distance. The lookahead distance,
which is the distance rs from the point pl that one should
iterate forward in the path to find the setpoint ps is now cho-
sen based on the distance to nearby objects:

rs =


0.1, if dmin ≤ 0.3,
dmin−0.2, if 0.3 < dmin < 1,
2dmin−1.2, if 1≤ dmin < 2.1,
3, if dmin ≥ 3.

(2)

where dmin is the shortest distance that to an object, as

6 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

(a) Path as generated by the
path planner (b) Rediscretized path

FIGURE 11: GENERATION OF SETPOINT.

recognized by the lidar.

4. Iterate to Setpoint on the Chosen Path. The discrete point
identified as the closest to the vessel’s position is now used
as a reference point from where to calculate the new set-
point. The setpoint is found by iterating n discrete points
forward in the path from the identified closest position.

n = round
(rs

rq

)
. (3)

Where round(·) sets (·) to the nearest integer value. The set-
point is finally set as

p = ps, (4)

where s = min(n+ l,N).
The setpoint found by this procedure can thus be sent to the
motion controller. In Fig. 11b the setpoint sent to the motion
controller is the purple dot.

Operator Interaction
During operations, a window that displays a figure of the

map, together with position, planned path and path destination is
automatically updated on the operator computer. This window is
interactive, and the user can utilize it to toggle between automatic
exploration and navigation to a known location on the map. This
display can be seen in Fig. 12

GNC System Implementation
In the implemented ROS architecture there are several

nodes, performing different tasks. An overview the network of

(a)

(b)

FIGURE 12: USER INTEFACE (ZOOMED).

nodes and topics in the ROS architecture can be seen in Fig. 13.
This figure also displays the physical units each node is run
on. Only the topics that are vital for the control of the vessel
are included in the figure. Thus, topics that are responsible for
parameter-setting or monitoring the system is not included.

The following nodes are present in the system: (ROS topics
are identified through italic, while ROS nodes are identified by
bold style)

1. RP-Lidar. Driver for the lidar. Generates a point cloud of
range data (/Scan).

2. Hector-Slam Nodes. Performs SLAM that generates an
occupancy grid (/Map) and the vessels position within it
(/Poseupdate).

3. Scan2SetPointDist. Calculates the desired line of sight
(/SetPointDistance) for the path follower.

4. Path2Setpoint. Generates the setpoint (/Setpoint) on the
planned path.

5. Hector2VesselPos. Transformation of the desired posi-
tion from Hector-SLAM (/Poseupdate) to vessel coordinates
(/Position).

6. MotionControl. Controls vessel to desired posi-
tion by setting desired control input of the actuators
(/Thrust1,/Thrust2,/Thrust3,/a1,/a2,/a3).

7. ROS-Serial. Transmitting the appropriate PWM signals, as
calculated by the control system to the motors and servos of
the system.

8. ExplorationPathplanning-Node. Generate reference

7 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

FIGURE 13: ROS NODE AND TOPIC INTERACTIONS IN
THE IMPLEMENTED SYSTEM.

tracks (/Path) for the vessel to follow.

The RP-lidar node [15], and the Hector SLAM node [16]
are open source packages that have been imported to the sys-
tem, the Arduino code is written in C, while the other nodes have
been written in Simulink/MATLAB and built by MATLAB C++
code-generation. The ExplorationPathplanning-node, was run in
MATLAB on the operator computer, during experiments as op-
posed to being compiled in C++ and installed on the RP2.

EXPERIMENTAL RESULTS
During the experiments, the vessel is operating in the Ma-

rine Cybernetics Laboratory, a basin at NTNU with length and
width of 40 m and 6.45 m respectively. To demonstrate the
vessels capability of autonomous exploration, varying obstacles
were present in the basin during operations. These included cam-
era mounts, other vessels, and hinders placed on wooden planks.
During operations, all objects were kept static, which presently
is a requirement for the SLAM algorithms to perform properly.

The experiment was conducted by placing the vessel in a
given location in the basin, from where the software system was
initialized. At initialization, the software system had no infor-
mation about its surrounding environment, and its mission was
to explore its environment in an efficient manner.

Two experiments are presented in this section. In Experi-
ment 1, the vessel starts in the middle of the basin and explore the
full basin, while in Experiment 2 the vessel starts in the labyrinth-
like section and explores towards the center. The obstacles in the
basin are set up slightly differently in the two experiments.

Both experiments were performed using an occupancy grid
with a resolution of 0.2 m per cell. A video of the experiments
has been made available online [17].

(a) Labyrinth section

(b) Middle section

FIGURE 14: LABORATORY SETUP EXPERIMENT 1.

FIGURE 15: EXPLORED BASIN, EXPERIMENT 1.
.

Experiment 1
In this experiment, the whole basin was successfully ex-

plored. The vessel mostly behaved as expected, but a few incre-
mental adjustments were still performed in the algorithms prior
to the next experiment.

Images of the basin as set up in the experiment can be seen
in Fig. 14, while the fully explored basin from this trial can be
seen in Fig. 15.

8 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

(a) Map,
Position A

(b) Map,
Position B

(c) Vessel, Position A

(d) Vessel, Position B

FIGURE 16: OPERATION, EXPERIMENT 2.

Experiment 2
This experiment yielded very satisfying results, with the ves-

sel exploring the scenario without problems. Figure 16 illustrate
the vessel with the explored map at two instances during the ex-
ploration.

The SLAM algorithms are able to recognize most objects
successfully, however, it had some issues in recognizing the wall
on the very left hand of the basin. This wall is a part of the basins
wave generator that has a smooth, not purely vertical surface.
The effect can be seen in Fig. 16b, where after halfway crossing
the width of the basin, the vessel took a detour and got quite close
to the wall, before it identified it as an obstacle and moved on.

Speed Analysis. By investigating the speed of the ves-
sel, which is provided in Fig. 17 one can study how the velocity
control law is performing. The vessel is adapting its setpoint,
and thus also its speed according to the distance to hinders. This
helped to ensure that the vessel never came close to colliding,

0.05

0.1

0.15

0.2

0.25

V
es

se
l s

pe
ed

 [m
/s

]

FIGURE 17: VESSEL SPEED, AS ESTIMATED BY THE
OBSERVER, EXPERIMENT 2.

while at the same time it efficiently explored the basin. Although
the speed also varies as a natural result of the vessel changing
directions, it is clear from the figure that the vessel is adjusting
its speed according to the distance to nearby objects. In partic-
ular, this is evident when the vessel passes the narrow passage,
corresponding to position B in Fig. 16. In this section, the vessel
slows down to about 0.07 m/s. Once the vessel has passed it and
gets into the open area, it quickly speeds up to about 0.25 m/s.

It should be noted that as an effect of very low damping
in yaw and no stabilizing keels, the vessels performance in ref-
erence tracking is limited. For this reason, the controller gains
have been kept relatively low, resulting in low operating speeds
ranging from 0 to 0.3 m/s. With better control of the vessel, the
gains could have been set higher, without risks of crashing, and
the basin could have been explored faster.

CONCLUSIONS
Summarized, the implemented system merge suitable

SLAM algorithms, an exploration strategy, a path planning strat-
egy, a motion controller, and a velocity control law to a well-
functioning GNC system. This system is able to perform the
objectives of exploration that this project set out to solve. A ben-
efit of the generated system is that it constructed by the use of
(relatively) low-cost components. The presented system is im-
plemented on a circular model vessel with similar performance
in surge and sway. However, it is reasonable that by introducing
a separate heading controller, a similar system could be imple-
mented on a fully actuated model vessel with a more conven-
tional ship design.

9 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

ACKNOWLEDGMENT
This work was supported by the Research Council of Nor-

way through the Centre of Excellence AMOS, project no.
223254, and through the project no. 254845, ”Real-Time Hy-
brid Model Testing”.

REFERENCES
[1] Nagatani, K., Okada, Y., Tokunaga, N., Kiribayashi,

S., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.,
Akiyama, H., Noda, I., et al., 2011. “Multirobot exploration
for search and rescue missions: A report on map building
in robocuprescue 2009”. Journal of Field Robotics, 28(3),
pp. 373–387.

[2] Leedekerken, J. C., Fallon, M. F., and Leonard, J. J.,
2014. “Mapping complex marine environments with
autonomous surface craft”. In Experimental Robotics,
Springer, pp. 525–539.

[3] ROS-community, 2017. ROS. [Online; accessed 3-January-
2017 from http://wiki.ros.org/].

[4] Verbiest, K., Berrabah, S., and Colon, E., 2015. “Au-
tonomous frontier based exploration for mobile robots”. In
International Conference on Intelligent Robotics and Ap-
plications, Springer, pp. 3–13.

[5] Ueland, E. S., 2016. “Marine autonomous exploration us-
ing a lidar”. Master’s thesis, NTNU.

[6] MathWorks. Robot operating system (ROS) sup-
port from Robotics System Toolbox. [Online; ac-
cessed 3-January-2017 from https://se.mathworks.com/
hardware-support/robot-operating-system.html].

[7] MUNIN, 2017. Munin/unmanned ship, web page. [Online;
accessed 3-January-2017 from http://www.unmanned-ship.
org/munin/].

[8] Robotshop, 2017. RPLIDAR. [Online; accessed
3-January-2017 from http://www.robotshop.com/en/
rplidar-360-laser-scanner.html].

[9] Santos, J. M., Portugal, D., and Rocha, R. P., 2013. “An
evaluation of 2D SLAM techniques available in robot op-
erating system”. In 2013 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), IEEE,
pp. 1–6.

[10] Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klin-
gauf, U., and von Stryk, O., 2014. “Hector open source
modules for autonomous mapping and navigation with res-
cue robots”. In RoboCup 2013: Robot World Cup XVII.
Springer, pp. 624–631.

[11] Muhammad, N., Fofi, D., and Ainouz, S., 2009. “Current
state of the art of vision based SLAM”. In IS&T/SPIE Elec-
tronic Imaging, International Society for Optics and Pho-
tonics, pp. 72510F–72510F.

[12] Fossen, T. I., 2011. Handbook of Marine Craft Hydrody-
namics and Motion Control. John Wiley & Sons, Ltd.

[13] Yamauchi, B., 1997. “A frontier-based approach for au-
tonomous exploration”. In Computational Intelligence in
Robotics and Automation, 1997. CIRA’97., Proceedings.,
1997 IEEE International Symposium on, IEEE, pp. 146–
151.

[14] Wikipedia, 2017. A* search algorithm — wikipedia, the
free encyclopedia. [Online; accessed 3-January-2017].

[15] Ferguson, M., 2017. RPLIDAR, source code. [Online; ac-
cessed 3-January-2017 from http://wiki.ros.org/rplidar].

[16] Kohlbrecher, S., 2017. Hector SLAM, source code.
[Online; accessed 3-January-2017 from http://wiki.ros.org/
hector slam].

[17] Ueland, E. Marine autonomous exploration. [Online;
accessed 3-January-2017 from https://www.youtube.com/
watch?v=BUihBGbhfDA].

10 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://wiki.ros.org/
https://se.mathworks.com/hardware-support/robot-operating-system.html
https://se.mathworks.com/hardware-support/robot-operating-system.html
http://www.unmanned-ship.org/munin/
http://www.unmanned-ship.org/munin/
http://www.robotshop.com/en/rplidar-360-laser-scanner.html
http://www.robotshop.com/en/rplidar-360-laser-scanner.html
http://wiki.ros.org/rplidar
http://wiki.ros.org/hector_slam
http://wiki.ros.org/hector_slam
https://www.youtube.com/watch?v=BUihBGbhfDA
https://www.youtube.com/watch?v=BUihBGbhfDA

