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a b s t r a c t

This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO)
for finding a moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the
search problem can be converted to the optimization of a cost function that represents the probability
of detecting the target. Here, the proposed MPSO is developed to solve that problem by encoding
the search trajectory as a series of UAV motion paths evolving over the generation of particles in
a PSO algorithm. This motion-encoded approach allows for preserving important properties of the
swarm including the cognitive and social coherence, and thus resulting in better solutions. Results from
extensive simulations with existing methods show that the proposed MPSO improves the detection
performance by 24% and time performance by 4.71 times compared to the original PSO, and moreover,
also outperforms other state-of-the-art metaheuristic optimization algorithms including the artificial
bee colony (ABC), ant colony optimization (ACO), genetic algorithm (GA), differential evolution (DE),
and tree-seed algorithm (TSA) in most search scenarios. Experiments have been conducted with real
UAVs in searching for a dynamic target in different scenarios to demonstrate MPSO merits in a practical
application.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Unmanned aerial vehicles (UAVs) have been receiving much
esearch interest with numerous practical applications, especially
n surveillance and rescue due to their capability of operating in
arsh environments with sensor-rich work capacity suitable for
ifferent tasks. In searching for a lost target using UAVs, there
ften exists a critical period called ‘‘golden time’’ in which the
robability the target being found should be highest [1]. As time
rogresses, that probability rapidly decreases due to the attenu-
tion of initial information and the influence of external factors
uch as weather conditions, terrain features and target dynamics.
he main objective in searching for a lost target using UAVs there-
ore includes finding a path that can maximize the probability
f detecting the target within a specific flight time given initial
nformation on target position and search conditions [2,3].

In the literature, the search problem is often formulated as
robabilistic functions so that uncertainties in initial assump-
ions, search conditions and sensor models can be adequately
ncorporated. In [2,4], a Bayesian approach has been introduced
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to derive the objective functions for evaluating the detection
probability of UAV flight paths. The initial search map has been
modeled as a multivariate normal distribution with the mean and
variance being computed based on initial information about the
target position [5,6]. In [3,6], the target dynamic is represented
by a stochastic Markov process which can then be deterministic
or not depending on the searching scenarios. The sensor, on the
other hand, is often modeled as either a binary variable with
two states, ‘‘detected’’ or ‘‘not detected’’ [5], or as a continuous
Gaussian variable [2].

Due to various probabilistic variables involved, the complexity
of the searching problem varies from the level of nondeterminis-
tic polynomial-time hardness (NP-hard [7]) to nondeterministic
exponential-time completeness (NEXP-complete [8]), in which
the number of solutions available to search grows exponentially
with respect to the search dimension and flight time. Conse-
quently, solving this problem using classical methods such as
differential calculus to find the exact solution becomes imprac-
tical, and hence, approximated methods are often used. A num-
ber of methods have been developed, such as greedy search
with one-step look ahead [2] and k-step look ahead [3], ant
colony optimization (ACO) [5], Bayesian optimization approach
(BOA) [4], genetic algorithm (GA) [9,10], cross entropy optimiza-
tion (CEO) [11], branch and bound approach [12], limited depth
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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search [13], and gradient descend methods [14,15]. Table 1 com-
pares main properties of some algorithms where the ‘‘multi-
agent’’ column implies the possibility of using multiple UAVs for
searching and ‘‘ad hoc heuristic’’ for the case being specifically
designated for the search problem. It is noted that most methods
cope with moving targets and use the binary model for detection
sensors. Some approaches [4,5,11,13] employ multiple UAVs to
speed up the search process, whereas others use ad hoc heuristic
to improve detection probability.

From the literature, it is recognizable that approaches to opti-
mal search diverge in assumptions, constraints, target dynamics
and searching mechanisms. Due to its complex nature, optimal
search, especially in scenarios with fast-moving targets, remains
a challenging problem. Besides, recent advancements in sensor,
communication and UAV technologies enable the development
of new search platforms. They pose the need for new methods
that should not only robust in search capacity but also pos-
sess properties such as computational efficiency, adaptability and
optimality.

For optimization, particle swarm optimization (PSO) is a po-
tential technique with a number of key advantages that have
been successfully applied in various applications [16–20]. It is less
sensitive to initial conditions as well as the variation of objective
functions and is able to adapt to many search scenarios via a small
number of parameters including an initial weight factor and two
acceleration coefficients [21]. It generally can find the global solu-
tion with a stable convergence rate and shorter computation time
compared to other stochastic methods [22]. More importantly,
PSO is simple in implementation with the capability of being
parallelized to run with not only computer clusters or multiple
processors but also graphical processing units (GPU) of a single
graphical card. This allows to significantly reduce the execution
time without requiring any change to the system hardware [23].

Motivated from the aforementioned analysis, we will em-
ploy the PSO methodology in this study to deal with the search
problem in complex scenarios for fast moving targets, aiming to
improve the search performance in both detection probability
and execution time. To this end, we propose a new motion-
encoded PSO algorithm, taking into account both cognitive and
social coherence of the swarm. Our contributions include: (i)
the formulation of an objective function for optimization, in-
corporating all assumptions and constraints, from the search
problem and the probabilistic framework; (ii) the development
of a new motion-encoded PSO (MPSO) from the idea of changing
the search space for the swarm to avoid getting stuck at local
maxima; (iii) the demonstration of MPSO implemented for UAVs
in experimental search scenarios to validate its outperformance
over other PSO algorithms obtained from extensive comparison
analysis. The results show that MPSO, on one hand, presents
superior performance on various search scenarios while on the
other hand remains simple for practical implementation.

The rest of this paper is structured as follows. Section 2 out-
lines the steps to formulate the objective function. Section 3
presents the proposed MPSO and its implementation for solving
a complex search problem. Section 4 provides simulation and
experimental results. A conclusion is drawn in Section 5 to close
our paper.

2. Problem formulation

The search problem is formulated by modeling the target,
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
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sensor and belief map with details as follows.
2.1. Target model

In the searching problem, the target is described by an un-
known variable x ∈ X representing its location. Before the search
starts, a probability distribution function (PDF) is used to model
the target location based on the available information, e.g., the
last known location of the target before losing its signal. This PDF
could be a normal distribution centered about the last known lo-
cation, but also could be a uniform PDF if nothing is known about
the target location. In the searching space, this PDF is represented
by a grid map called the belief map, b(x0), in which the value in
each cell corresponds to the probability of the target being in that
cell. The map can be created by discretizing the searching space
S into a grid of Sr × Sc cells and associating a probability to each
cell. Assume the target presents in the searching space, we have∑

x0∈S
b(x0) = 1.

During the searching process, the target may be not static but
navigate in a certain pattern. This pattern can be modeled by a
stochastic process which can be assumed as a Markov process.
In the special case of a conditionally deterministic target, which
is considered in this study, that pattern merely depends on the
initial position x0 of the target. In that case, the transition func-
tion, p(xt |xt−1), representing the probability which the target goes
from cell xt−1 to xt , is known for all cells xt ∈ S. Consequently,
the path of the target will be entirely known if its initial position
is known. This assumption is made quite often for the survivor
search at sea [24] and also for the search problems in general [5].

2.2. Sensor model

In order to look for and find a target, a sensor is installed
on the UAV to carry out an observation zt at each time step t .
The observations are independent such that the occurrence of
one observation provides no information about the occurrence
of the other observation. A detection algorithm is implemented
to return a result for each observation which is assumed to have
only two possible outputs, the detection of the target, zt = Dt ,
or no detection, zt = D̄t , where Dt represents a ‘‘detection’’
event at time t . Due to imperfectness of the sensor and detection
algorithm, an observation of the target detected, zt = Dt , still
does not ensure the presence of the target at xt . This is reflected
through the observation likelihood, p(zt |xt ), given knowledge of
the sensor model. The likelihood of no detection, given a target
location xt , is then computed by:

p(D̄t |xt ) = 1− p(Dt |xt ). (1)

2.3. Belief map update

Once the initial distribution, b(x0), is initialized, the belief
map of the target at time t , b(xt ), can be established based on
the Bayesian approach and the sequence of observations, z1:t =
{z1, . . . , zt}, made by the sensor. This approach is conducted re-
cursively via two phases, prediction and update. In the prediction,
the belief map is propagated over time in accordance with the
target motion model. Suppose at time t , the previous belief map,
b(xt−1), is available. Then, the predicted belief map is calculated
as:

b̂(xt ) =
∑

xt−1∈S

p(xt |xt−1)b(xt−1). (2)

Notice from (2) that the belief map b(xt−1) is in fact the con-
ditional probability of the target being at xt−1 given observations
up to t − 1, b(xt−1) = p(xt−1|z1:t−1). When the observation
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)

zt is available, the update is conducted simply by multiplying
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Table 1
Comparison between search methods.
Method Work Target Binary

sensor
Multi-
agent

Ad hoc
heuristic

one-step look ahead [2] Static & Dynamic ✗ ✗ ✓

k-step look ahead [3] Dynamic ✓ ✗ ✓

BOA [4] Dynamic ✓ ✓ ✗

ACO [5] Dynamic ✓ ✓ ✓

GA [10] Static ✓ ✗ ✗

CEO [11] Dynamic ✓ ✓ ✗

Depth search [13] Static ✓ ✓ ✓

Gradient descent [14] Static ✗ ✗ ✗
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the predicted belief map by the new conditional observation
likelihood as follows:

b(xt ) = ηtp(zt |xt )b̂(xt ), (3)

where ηt is the normalization factor,

ηt = 1/
∑
xt∈S

p(zt |xt )b̂(xt ). (4)

ηt scales the probability that the target presents inside the search-
ing area to one, i.e.,

∑
xt∈S b(xt ) = 1.

2.4. Searching objective function

According to the Bayesian theory, the probability that the
target does not get detected at time t during an observation,
rt = p(D̄t |z1:t−1), relies on two factors: (i) the latest belief map
from the prediction phase (2), and (ii) the no detection likelihood
(1). Across the whole searching area, that probability is given by:

rt =
∑
xt∈S

p(D̄t |xt )b̂(xt ). (5)

Notice that rt is exactly the inverse of the normalization factor ηt
in (4), rt = 1/ηt , for a ‘‘no detection’’ event, zt = D̄t , and thus
is smaller than 1. By multiplying the not detected probability rt
over time, the joint probability of failing to detect the target from
time 1 to t , Rt = p(D̄1:t ), is then obtained:

Rt =

t∏
k=1

rk = Rt−1rt . (6)

Hence, the probability that the target gets detected for the first
time at time t is computed as:

pt =
t−1∏
k=1

rk(1− rt ) = Rt−1(1− rt ). (7)

Summing pt over t steps gives the probability of detecting the
target in t steps:

Pt =
t∑

k=1

pk = Pt−1 + pt . (8)

Pt is thus often referred to as the ‘‘cumulative’’ probability to
distinguish it with pt . Notice that

Pt = 1− Rt , (9)

and as t grows, the probability of first detection pt becomes
smaller because the chance of detecting the target in previous
steps increases. The cumulative probability Pt is thus bounded
and increases toward one as t goes to infinity.

The objective function for the searching problem can now be
formulated based on (8) given a finite search time. Let the search
time period be {1, . . . ,N}, the goal of the searching strategy is to
etermine a search path O = (o , . . . , o ) that could maximize
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
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1 N
the cumulative probability Pt . As such, the objective function is
eventually formulated as follows:

J =
N∑

t=1

pt . (10)

. Motion-encoded particle swarm optimization

As the search problem defined in (10) is NP-hard [7,8], the
ime required to calculate all possible paths to find the optimal
olution would greatly increase and become intractable. There-
ore, a heuristic approach like PSO can be a good option for
olving the optimal search problem as in this study.

.1. Particle swarm optimization

PSO is a population-based stochastic technique, inspired by
ocial behavior of bird flocking, designed for solving optimization
roblems [16,25]. In PSO, a swarm of particles is initially gen-
rated with random positions and velocities. Each particle then
oves and evolves in a cognitive fashion with other particles to
eek the global optimum. Those movements are driven by its best
osition, Lk, and the best position of the swarm, Gk. Let xk and vk

be the position and velocity of a particle at generation k, respec-
ively. The movement of that particle in the next generation is
iven by:

k+1 ← wvk + ϕ1r1(Lk − xk)+ ϕ2r2(Gk − xk) (11)

xk+1 ← xk + vk+1, (12)

where w is the inertial weight, ϕ1 is the cognitive coefficient, ϕ2
is the social coefficient, and r1, r2 are random sequences sampled
from a uniform probability distribution in the range [0, 1]. From
(11) and (12), the movement of a particle is directed by three
factors, namely, following its own way, moving toward its best
position, or moving toward the swarm’s best position. The ratio
among those factors is determined by the values of w, ϕ1, and ϕ2.

.2. MPSO for optimal search

There have been several modifications and improvements
rom the PSO algorithm, depending on the application. However,
he implementation of PSO for online searching for dynamic
argets in a complex environment remains a challenging task,
articularly in a limited time window. For the search problem,
t is desired to encode the position of particles in a way that
he particles can gradually move toward the global optimum. A
ommon approach is to define a position as a multi-dimensional
ector representing a possible search path:

k ∼ Ok = (ok,1, . . . , ok,N ), (13)

here ok,i corresponds to a node of the search map [26,27]. The
drawback of this approach is that it does not cover the adjacent
dynamic behavior in path nodes and thus may result in invalid
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Fig. 1. Motion-encoded illustration for a path with three segments, Uk =

((1, 0), (1, 3π/2), (
√
2, 7π/4)).

aths during the searching process. Discrete PSO can be used to
vercome this problem, but the momentum of particles is not
reserved, causing local maxima [28]. Indirect approaches such as
he angle-encoded PSO [29] and priority-based encoding PSO [30]
an be a good option to deal with it and generate better results.
heir mapping functions, however, require the phase angles to be
ithin the range of [−π/2, π/2]which limits the search capacity,
specially in a large dimension.
Here, we propose the idea of using UAV motion to encode the

osition of particles. Instead of using nodes, we view each search
ath as a set of UAV motional segments, each corresponds to the
ovement of UAV from its current cell to another on the plane
f flight. By respectively defining the magnitude and direction of
he motion at time t as ρt and αt , that motion can be completely
escribed by a vector ut = (ρt , αt ). A search path is then
escribed by a vector of N motion segments, Uk = (uk,1, . . . , uk,N ).
sing Uk as the position of each particle, equations for MPSO can
e written as:

Uk+1 ← wUk + ϕ1r1(Lk − Uk)+ ϕ2r2(Gk − Uk) (14)

k+1 ← Uk +∆Uk+1. (15)

ig. 1 illustrates a path with three segments, Uk = ((1, 0),
(1, 3π/2), (

√
2, 7π/4)), where the belief map is color-coded with

probability values indicated on the right.
During the search, it is also required to map Uk to a direct

path Ok so that the cost associated with Uk can be evaluated. As
shown in Fig. 1, the mapping process can be carried out by first
constraining the UAV motion to one of its eight neighbors in each
time step. Then, the motion magnitude ρt can be normalized and
the motion angle αt can be quantized as:

ρ∗t = 1 (16)

α∗t = 45◦⌊αt/45◦⌉, (17)

where ⌊⌉ represents the operator for rounding to the nearest
integer. Node ok,t+1 corresponding to the location of UAV in the
Cartesian space is then given by:

ok,t+1 = ok,t + u∗k,t , (18)

where

u∗k,t = (⌊cosα∗t ⌉, ⌊sinα
∗

t ⌉). (19)

From the decoded path Ok, the cost value can be evaluated by
the objective function (10) and then the local and global best can
be computed as follows:

Lk =
{

Uk if J(Ok) > J(L∗k−1) , (20)
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
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Lk−1 otherwise
Gk = argmax
Lk

J(Ok), (21)

where L∗k is the decoded path of Lk. It can be seen from the
mapping process that (17) discretizes the motion to one of eight
possible directions, (19) converts the moving direction to an
increment in Cartesian coordinates, and (18) incorporates the
increment to form the next node of the path.

Similarly to the interchange between the time domain and
frequency domain in signal analysis, the mapping process of
MPSO allows particles to search in the motion space instead of
the Cartesian space. This leads to the following advantages:

• The motion space maintains the location of nodes consec-
utively so that the resultant paths after each generation
evolvement are always valid, which is not the case of the
Cartesian space;
• In motion space, the momentum of particles and swarm be-

haviors including exploration and exploitation are preserved
so that the search performance is maintained and the swarm
is able to cope with different target dynamics;
• As the normalization of ρt and quantization of αt in (16) and

(17) are only carried out for the purpose of cost evaluation,
their continuous values are still being used for velocity and
position updates as in (14)–(15). This property is important
to avoid the discretizing effect of PSO so that the search
resolution is not affected.

Finally, it is also noted that MPSO preserves the search mech-
anism of PSO via its update Eqs. (14)–(15) so that the advan-
tages of PSO such as stable convergence, independence of initial
conditions and implementation feasibility can be maintained.

3.3. Implementation

Fig. 2 shows the flowchart of MPSO to illustrate the implemen-
tation presented in Algorithm 1. Its structure is based on the core
PSO but extended with the incorporation of the motion encoding
and decoding steps. The belief map update as in (2) and (3) needs
to be conducted during calculating the fitness when the target is
non-static. Notably, the parallelism technique proposed in [23]
can be applied to speed up the computation process of MPSO.

4. Results

To evaluate the performance of MPSO, we have conducted
extensive simulation, comparison and experiments with detail
described below.

4.1. Scenarios setup

For the sake of coverage, six different search scenarios are used
to analyze the performance of MPSO for optimal search (some of
them are adopted from [5]). The scenarios are defined to have
the same map size (Sr = Sc = 40), but differ in the initial
locations of UAV, target motion model P(xt |xt−1) and initial belief
map b(x0). As shown in Fig. 3, the probability map is color-coded
with the target dynamics presented by a white arrow and the
initial location of UAV described by a white circle. The scenarios
represent different searching situations as follows:

Scenario 1 has two high probability regions located next to
each other. They are slightly different in location and value, which
may cause difficulty in finding a better region to search for the
target.

Scenario 2 includes two separated high probability regions lo-
cated opposite to each other over the UAV location. The algorithm
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Table 2
Comparison between PSO algorithms on fitness representing the accumulated detection probability.
Scenario MPSO PSO QPSO APSO

1 0.1876 ± 0.0011 0.1476 ±0.0043 0.1198 ± 0.0037 0.1869 ± 0.0025
2 0.247 ± 0.0055 0.2019 ± 0.0163 0.2014 ± 0.0046 0.2393 ± 0.0113
3 0.6554 ± 0.014 0.5403 ± 0.0218 0.5468 ± 0.014 0.6649 ± 0.0287
4 0.5018 ± 0.0095 0.4082 ± 0.0092 0.4259 ± 0.0164 0.4969 ± 0.0109
5 0.2213 ± 0.0025 0.1785 ± 0.0067 0.1819 ± 0.0008 0.2199 ± 0.004
6 0.1881 ± 0.0112 0.097 ± 0.0239 0.0943 ± 0.0168 0.1735 ± 0.0187
Fig. 2. Flowchart of MPSO algorithm.

as to quickly identify the higher probability region to search and
rack as the target is moving south-west.

Scenario 3 has one small dense region moving rapidly toward
he south-east. It thus tests the algorithm in its exploration and
daptation capability.
Scenario 4 is similar to Scenario 3 except that the target is

oving toward the UAV’s start location. It further evaluates the
daptability of the searching algorithm.
Scenario 5 consists of two probability regions located oppo-

itely via the start location in which the right region is slightly
igher in probability. As the target is moving north, the algorithm
eeds to identify the correct target region.
Scenario 6 is similar to Scenario 5, but the start location

is below the potential regions and the target is moving North-
East. It thus evaluates the capability of searching in a diagonal
direction.

In our evaluations, MPSO is implemented with the parameters
= 1 at the damping rate of 0.98, ϕ1 = 2.5 and ϕ2 = 2.5.

The swarm size is chosen to be 1000 particles. The number of
iterations is 100 and the size of the search path is 20 nodes.
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
106705, https://doi.org/10.1016/j.asoc.2020.106705.
/* Initialization: */
1 Get target dynamics and initial data;
2 Create belief map;
3 Set swarm parameters w, ϕ1, ϕ2, swarm_size;
4 foreach particle in swarm do
5 Create random motion-encoded paths Uk;
6 Assign Uk to particle position;
7 Compute fitness value of each particle;
8 Set local_best value of each particle to itself;
9 Set velocity of each particle to zero;

10 end
11 Set global_best to the best fit particle;

/* Evolutions: */
12 for k← 1 to max_generation do
13 foreach particle in swarm do
14 Compute motion velocity ∆Uk+1; /* Eq. (14) */
15 Compute new position Uk+1; /* Eq. (15) */
16 Decode Uk+1 to Ok+1; /* Eqs. (19)-(18) */
17 Update fitness of Ok+1; /* Eq. (10) */
18 Update local_best Lk+1; /* Eq. (20) */
19 end
20 Update global_best Gk+1; /* Eq. (21) */
21 end

Algorithm 1: Pseudo code of MPSO.

Due to the stochastic nature of PSO, the algorithm is executed 10
times to find the average and standard deviation values for each
scenario.

4.2. Search path

Fig. 4 shows the search paths of MPSO for each scenario
together with the cumulative probability values. In all scenarios,
MPSO is able to find the highest probability regions and generates
relevant paths for the UAV to fly. For scenarios with only one
high probability region such as Scenario 3 and 4, the cumulative
probabilities are high because the chance of finding the target
is not spread to other regions. It is also noted from Fig. 4 that
the probability map only reflects the target belief at the last
step whereas the search path represents the tracking of high
probability regions over time. By comparing them with those
in Fig. 3, we can see that the search paths adapt to the target
dynamics to maximize the detection probability.

4.3. Comparison with other PSO algorithms

We have judged the merit of MPSO over other PSO algorithms
including a classical PSO, denoted here as PSO for the comparison
purpose, quantum-behaved PSO (QPSO) and angle-encoded PSO
(APSO).

PSO is introduced in [16] in which the particles encode a
search path as a set of nodes. They then evolve according to (11)
and (12) to find the optimal solution.
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Fig. 3. Scenarios used for evaluating the searching algorithms.
APSO operates in a similar way as PSO. It, however, encodes
he position of particles as a set of phase angles so that each angle
epresents the direction in which the path would emerge [29].

QPSO, on the other hand, assumes particles to have quantum
ehavior in a bound state. The particles are attracted by a quan-
um potential well centered on its local attractor and thus have a
ew stochastic update equation for their positions [31]. In QPSO,
he position of particles also encodes a search path that includes
set of nodes.
Table 2 shows the average and standard deviation values of

he fitness representing the accumulated detection probability
btained by all algorithms after 10 runs. It can be seen that MPSO
ntroduces the best performance in 5 scenarios. APSO is slightly
etter than MPSO in Scenario 3, but its convergence is not stable
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
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reflected via a larger standard deviation value. These results can
be further verified via the convergence curves shown in Fig. 5.
They show that PSO and QPSO present poor performance as the
use of nodes to encode search paths does not maintain particle
momentum resulting in local maxima.

APSO, on the other hand, introduces a comparable perfor-
mance with MPSO. Unlike PSO and QPSO, the use of angles in
APSO allows particles to search in orientation space and thus
maintains the swarm properties. Interestingly, APSO can be con-
sidered as a special case of MPSO when the motion magnitude
is constrained to 1. While this constraint limits the flexibility of
the swarm, it may improve the exploration capacity in certain
scenarios to yield a good result such as in Scenario 3.
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Fig. 4. Search paths for each scenario generated by MPSO.
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4.4. Comparison with metaheuristic optimization algorithms

To further evaluate the performance of MPSO, we have com-
pared it with state-of-the-art metaheuristic optimization algo-
rithms including the artificial bee colony (ABC), ant colony op-
timization (ACO), genetic algorithm (GA), differential evolution
(DE), and tree-seed algorithm (TSA).

ABC searches for optimal solutions based on the cooperative
behavior of three types of bees: employed bees, onlooker bees
and scout bees [32]. Our implementation represents each solution
as a search path that consists of a set of motion segments similar
to MPSO.

ACO solves optimization problems based on heuristic informa-
tion and a pheromone model of artificial ants, each maintains a
feasible solution [33]. Our implementation of ACO is based on [5]
in which the ‘‘ACO-Node+H’’ approach is used together with the
max–min ACO.
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
106705, https://doi.org/10.1016/j.asoc.2020.106705.
GA is a popular metaheuristic optimization that modifies a
population of individual solutions similar to the process of natural
selection [9]. Our implementation of GA is based on the ‘‘EA-dir’’
approach in [10] where a path is encoded as a string of directions
subjected to two mutation techniques including ‘‘flip’’ and ‘‘pull’’.

DE is an optimization method that finds the optimal solution
y improving its candidates via simple mathematical formulas
rom a population of individual solutions [34]. In implementing
E for optimal search, we represent each solution as a set of
otions similar to the representation used in MPSO.
TSA solves the optimization problem by simultaneously ex-

loring and exploiting the search space based on the spread of
eeds from a tree population. The level and balance between the
xploration and exploitation are controlled by predefined param-
ters including the search tendency (ST ) and the number of seeds
NS). Those parameters are chosen as in the original study [35] in
ur implementation, i.e., ST = 0.1 and NS ∈ [0.1, 0.25].
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Fig. 5. Convergence curves of the four PSO algorithms on the six benchmark scenarios.
Table 3 presents the fitness values corresponding to the op-
timal solutions of MPSO and metaheuristic algorithms over six
scenarios after 10 runs. The values include the average and stan-
dard deviation representing the cumulative detection probability.
It can be seen that MPSO outperforms other metaheuristic algo-
rithms in scenarios 1 to 5 with the highest fitness values and
small standard deviation. TSA is the second best with satisfactory
results in most scenarios, whereas the remaining algorithms are
only good in one or two scenarios.

Fig. 6 further compares the convergence among the algo-
rithms. While MPSO shows good exploitation capability repre-
sented via the high fitness value in most scenarios, its exploration
reflected via the convergence speed is rather slow in some sce-
narios such as Scenario 3 where the high probability region is
small and the target is moving away from the UAV. TSA, on the
other hand, is good at exploration but rather limited in exploita-
tion so that its final fitness values are slightly less than MPSO.
ACO performs well in detecting static and slow-moving targets,
but its adaptation to fast-moving targets is limited due to the
nature of ACO incrementally exploring via nodes. DE and ABC
have stable performance in most scenarios. GA, on the other hand,
is often trapped at local minimums as the crossover and mutation
operators cause many invalid paths during operation. Besides, the
enhanced ‘‘flip’’ and ‘‘pull’’ operators which prioritize horizontal
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
106705, https://doi.org/10.1016/j.asoc.2020.106705.
and vertical search do not perform well in scenarios requiring
diagonal search such as Scenario 6.

4.5. Execution time

Apart from the accuracy, we also evaluate the execution time
of all algorithms to roughly estimate their complexity. We exe-
cuted all algorithms under the same conditions of software and
computer hardware. Table 4 shows the average execution time
together with the standard deviation after 10 runs on an Intel
Core i7-7600U 2.80 GHz processor. It can be seen that MPSO is
the fastest in four scenarios, followed by ABC with two scenarios.
DE also introduces relatively short execution time due to its sim-
plicity in the search mechanism. TSA, on the other hand, is rather
slow due to the extra computation required to evaluate the seeds
of each tree. ACO is the slowest because of a large time spent on
calculating heuristic information [5]. Notably, the execution time
of APSO is close to MPSO which further explains it as a special
case of MPSO. PSO and QPSO both require extra execution time
due to the invalid paths generated during operation.

4.6. Validation on UAV platform

To demonstrate the practical use of MPSO, we have applied it
to real searching scenarios with details as follows.
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Table 3
Comparison between MPSO and other metaheuristic algorithms on fitness.
Scenario MPSO ABC GA ACO DE TSA

1 0.1876 ± 0.0011 0.1691 ± 0.0076 0.1283 ± 0.0001 0.1836 ± 0.0013 0.1818 ± 0.0015 0.1873 ± 0.0006
2 0.247 ± 0.0055 0.2099 ± 0.0041 0.2151 ± 0.0018 0.2145 ± 0.0049 0.22 ± 0.0045 0.2362 ± 0.0085
3 0.6554 ± 0.014 0.5872 ± 0.0152 0.5995 ± 0.003 0.6053 ± 0.02 0.5985 ± 0.0166 0.6236 ± 0.0135
4 0.5018 ± 0.0095 0.4225 ± 0.0017 0.3497 ± 0.0311 0.4866 ± 0.0139 0.4243 ± 0.0252 0.4626 ± 0.0239
5 0.2213 ± 0.0025 0.2093 ± 0.0071 0.1733 ± 0.0001 0.2208 ± 0.0024 0.2128 ± 0.006 0.2209 ± 0.0005
6 0.1881 ± 0.0112 0.181 ± 0.0019 0.1255 ± 0.0001 0.15 ± 0.0119 0.1829 ± 0.0139 0.1889 ± 0.0018
Table 4
Comparison between MPSO and other algorithms on execution time in seconds.
Scenario MPSO PSO QPSO APSO ABC GA ACO DE TSA

1 43 ± 2 129 ± 6 140 ± 15 50 ± 8 34 ± 1 85 ± 2 144 ± 3 37 ± 3 84 ± 2
2 26 ± 4 150 ± 7 180 ± 22 34 ± 4 34 ± 5 95 ± 3 157 ± 2 32 ± 6 57 ± 6
3 30 ± 8 142 ± 4 149 ± 3 39 ± 4 31 ± 4 97 ± 1 150 ± 5 34 ± 2 50 ± 2
4 20 ± 2 149 ± 7 149 ± 1 32 ± 5 30 ± 3 92 ± 3 133 ± 3 26 ± 3 47 ± 1
5 29 ± 7 126 ± 4 129 ± 5 46 ± 5 34 ± 4 92 ± 3 150 ± 4 31 ± 3 60 ± 5
6 48 ± 7 140 ± 3 139 ± 2 61 ± 1 39 ± 3 99 ± 2 146 ± 13 39 ± 3 85 ± 2
Fig. 6. Convergence curves of MPSO and other metaheuristic algorithms on the six benchmark scenarios.
.6.1. Experimental setup
The experiment is carried out in the search area of 60 m × 60

m located in a park in Sydney. The UAV used is a 3DR Solo drone
with a control architecture developed for infrastructure inspec-
tion [36] that can be controlled via a ground control station (GCS)
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
106705, https://doi.org/10.1016/j.asoc.2020.106705.
software named Mission Planner. The detection sensor is a Hero 4

camera attached to the drone via a three-axis gimbal responsible

for adjusting and stabilizing the camera. An unmanned ground

vehicle (UGV) is used as the target. The UGV is equipped with
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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Fig. 8. The target within the vision of the camera attached on the drone.

ontrol and communication modules to allow it to track certain
rajectories for the sake of experimental verification.

In experiments, initial locations of UAV and UGV are obtained
ia the GPS modules equipped on those vehicles and used as
he input to generate a belief map. The map is fed to MPSO to
enerate a search path that includes a list of waypoints. Those
Please cite this article as:M.D. PhungandQ.P. Ha,Motion-encodedparticle swarmoptim
106705, https://doi.org/10.1016/j.asoc.2020.106705.
waypoints are loaded into Mission Planner to fly the UAV. During
the flight, for recording the testing results, positions of the vehi-
cles are tracked via GPS and the video received from the camera
is streamed to GCS.

4.6.2. Experimental results
Fig. 7(a) shows the belief map and path generated by MPSO for

the scenario in which the UGV started from the center of the map
at the latitude of−33.875992 and the longitude of 151.19145 and
moved in East direction. Fig. 7(b) shows the planned and actual
flight paths recorded via Mission Planner together with the actual
path of UGV. It can be seen that the flight path tracks the planned
path with some inevitably small tracking errors caused by GPS
positioning. Those errors can be compensated for by extending
the field of view of the detection camera via the flight attitude.
The UAV thus can trace and approach the target at the location of
(−33.87598,151.19153), as shown in Fig. 7(b). This can be verified
n Fig. 8 that displays the target within the vision of the camera.

In another experiment where the UGV moves toward the
tarting location of the UAV, the planned path adapts to it by
urning backward as shown in Fig. 7(c). Fig. 7(d) presents the
ctual trajectories of the UAV and UGV. It can be seen that the
AV tracks the planned path to approach the target at the loca-
ion of (−33.875938,151.191515) and then can trace it eventually.
hose results, together with various successful trials, confirm the
alidity and applicability of our proposed algorithm.

.7. Discussion

Through extensive simulation, thorough comparison and ex-
eriments as described above, it can be seen that MPSO presents
ization formoving target searchusingUAVs,AppliedSoft Computing Journal (2020)
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better performance than other state-of-the-art heuristic algo-
rithms in most search scenarios and is suitable for practical UAV
search operations. The rationale for the success of MPSO lies
in the motion-encoded mechanism that prevents the algorithm
from generating invalid paths during the searching process so
that it can avoid the need for re-initialization, and as such, to
accelerate the convergence. The motion-encoded mechanism also
allows MPSO to search in the motion space instead of the Carte-
sian space to improve search performance and better adapt to
target dynamics. This advantage is clearly reflected in the good
search result of MPSO for the challenging Scenario 4 where the
target moves in the opposite direction to the search path that
requires the UAV to turn around. Nevertheless, like PSO, MPSO
may need to increase the swarm size and number of iterations if
the search dimension increases [37]. In those scenarios, parallel
implementation is required to effectively reduce the computa-
tion time, and hence, improve the scalability of the proposed
algorithm for large-scale systems.

In practical search, the target dynamics may vary depending
on the applications so that the deterministic assumption used
in this study may go beyond its validity. In those scenarios,
a prediction mechanism using optimal estimators such as the
Kalman filter [38] can be employed to provide a prediction of
the target trajectory. It is then used to calculate the cumulative
probability used in the objective function of MPSO.

5. Conclusion

We have presented a new algorithm, the motion-encoded par-
ticle swarm optimization (MPSO), to solve the problem of optimal
search for a moving target using UAVs. The algorithm encodes
the search path as a series of motions that are directly applicable
to the search problem which constrains the movement of a UAV
to its neighbor cells. By changing the search domain from the
Cartesian space to motion space, the algorithm is able to adapt
to different target dynamics. It also preserves key properties of
PSO to enhance the search performance and allows to conduct
continuous search in discrete maps. Simulation and experimen-
tal results show that the algorithm is effective and practical
enough to deploy for search operations. To be effective also for
large-scale systems, the proposed algorithm would need parallel
computation to further reduce its execution time. Our future
work will focus on evaluating MPSO on benchmarking functions
and exploring its capability to solve other complex optimization
problems.
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