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 

Abstract— Time-frequency (TF) analysis (TFA) method is an 
important tool in industrial engineering fields. However, 
restricted to Heisenberg uncertainty principle or unexpected 
cross-terms, the classical TFA methods often generate blurry TF 
representation, which heavily hinder its engineering applications. 
How to generate the concentrated TF representation for a 
strongly time-varying signal is a challenging task. In this paper, 
we propose a new TFA method to study the non-stationary 
features of strongly time-varying signals. The proposed method is 
based on synchrosqueezing transform and employs an iterative 
reassignment procedure to concentrate the blurry TF energy in a 
step-wise manner, meanwhile retaining the signal reconstruction 
ability. Two implementations of the discrete algorithm are 
provided, which show that the proposed method has limited 
computational burden and has potential in real-time application. 
Moreover, we introduce an effective algorithm to detect the 
instantaneous frequency trajectory, which can be used to 
decompose mono-component modes. Numerical and real-world 
signals are employed to validate the effectiveness of the proposed 
method by comparing with some advanced methods. By 
comparisons, it is shown that, the proposed method has the better 
performances in addressing strongly time-varying signals and 
noisy signals. 

Index Terms—Time-frequency analysis, 
multi-synchrosqueezing transform, signal reconstruction.  

I. INTRODUCTION 

Time-frequency (TF) analysis (TFA) is an effective tool to 
analyze time-varying signals and has drawn considerable 
attention in the past few decades [1-2]. The classical linear 
methods, such as short time Fourier transform (STFT) and 
wavelet transform (WT), can expand a one-dimensional 
time-series signal into the two-dimensional (2D) TF plane. 
From the TF plane, we can observe time-varying features and 
perform signal decomposition. However, restricted by the 
Heisenberg uncertainty principle, TF representations generated 
via conventional methods are often blurry, and it is impossible 
to provide a precise TF description for a time-varying signal. 
The recent development of TFA methods involves designing 
high-resolution methods while retaining the ability to recover 
the original time-series signal [3]. Therefore, we can determine 
the time-varying features as detailed as possible and achieve the 
decomposition of the multi-component modes. The eventual 
development goal of the TFA techniques should be the ideal 
TFA (ITFA), which can be formulated as 
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where the ()  denotes the Dirac delta function, which 

degenerates to Kronecker delta function in the discrete signal 
processing [4, 5]. The expression (1) is based on the 
multi-component non-stationary signal model 
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where the ( )kA t  is the instantaneous amplitude (IA), ( )k t  

denotes the instantaneous phase (IP), and its first-order 

derivative ( )k t  is the instantaneous frequency (IF). From (1), 

it is known that the ITFA representation possesses highly 
concentrated energy and appears only in the IF trajectories. 

Unfortunately, the shortcomings of the conventional TFA 
methods heavily restrict their applications in real-world data 
processing. To improve the performance of conventional 
methods and to approach ITFA gradually, many advanced 
methods have been developed in the past few decades, e.g., the 
reassignment method (RM) [6], synchrosqueezing transform 
(SST) [7-9], demodulated SST (DSST) [10-13] and high-order 
SST [14-19]. 

The RM technique is designed to improve the readability of 
the original TF representation [6]. The main procedure of RM is 
to first calculate the newly reassigned positions for each TF 
point based on TF phase information. Then, the 2D 
reassignment operations (respectively, frequency reassignment 
and time reassignment) are employed to integrate the TF 
spectrogram in the TF direction. The RM technique inspires 
that the post-processing on the conventional TFA methods is an 
effective way to obtain a sharper TF result. However, the RM 
framework is based on a spectrogram, which means that the 
RM result loses its ability to reconstruct signal. 

Just improving readability is not enough for real-world 
applications. Another recent technique, the SST, has brought 
new hope to achieve ITFA-like tools [7]. The SST method not 
only enhances the TF resolution, but also allows for 
reconstructing the signal. It has been proved that the SST result 
is equivalent to the ITFA representation when addressing a 
purely harmonic signal. However, many studies show that, 
when dealing with time-varying signals, e.g., chirp signals or 
nonlinear frequency-modulated (FM) signals, the SST cannot 
generate a concentrated TF result [8, 9]. This is because the 
frequency reassignment operator in the SST cannot provide an 
unbiased estimation for the true time-varying IF. How to obtain 
the more precise frequency reassignment operator is the most 
essential question to solve the problem in the SST method. 

Linear TFA methods are to calculate the inner product 
between the signal and the basis function, which can locate the 
local time-varying features. Taking STFT for example, the 
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STFT framework is established on the assumption of the 
considered signal should be piece-wisely stationary in a short 
time. However, the analyzed time-varying signal cannot be 
guaranteed to always be stationary in a short time, e.g., a strong 
FM signal. According to the inner product theory, a more 
well-matched basis function with the time-varying signal can 
be more suitable for characterizing the TF features with 
concentrated energy [20]. Therefore, many non-linear TFA 
methods are proposed to address the strongly time-varying 
signals by demodulating the FM component [10-13]. 
Furthermore, it is found that the demodulated TF result can lead 
to a more precise frequency reassignment operator. Such 
methods, combining SST and the demodulated technique, show 
its effectiveness in generating highly energy-concentrated TF 
results [12, 13]. To demodulate a signal, we need to know the 
time-varying FM law of the signal in advance. However, due to 
the complexity and diversity of practical cases, determining the 
precise demodulated parameter is very difficult, especially for 
addressing signals with multiple FM components [11, 21]. 

In practice, the non-parametric and non-demodulated SST is 
more suitable for addressing real-world data. The authors 
proposed the second-order SST that can effectively provide 
high-resolution TF representation while retaining the reversible 
ability [14, 15]. Recently, the same group further proposed a 
higher-order SST that is designed to obtain more concentrated 
TF results [16]. However, the increasing SST order comes with 
a higher computational cost. For instance, the original SST 
needs to execute only one STFT operation, while the 
fourth-order SST requires executing eleven STFT operations. 

In this paper, we present an iterative procedure that can 
effectively improve the energy concentration of the SST 
method in addressing strongly time-varying signals, meanwhile 
still allowing for perfect signal reconstruction. In theory, the 
proposed method belongs to the post-processing tool of the 
STFT. To derive this method, the STFT operation needs to be 
executed only once, such that it has a low computational cost. It 
does not require extra parameters or a priori information to 
demodulate the FM modes, which is more suitable for 
real-world applications. This paper is structured as follows. The 
theory of the proposed method are detailed in Section II. The 
numerical and experimental validations are provided in Section 
III and Section IⅤ. The Discussion and conclusion are drawn in 
Section Ⅴ and Section ⅤI, respectively. 

II. MULTI-SYNCHROSQUEEZING TRANSFORM 

A. Synchrosqueezing transform 

In this section, we begin our study based on an STFT 

framework. The STFT of a function 2 ( )s L   with respect to 

the real and even window 2 ( )g L   is defined by 

 ( )( , ) ( ) ( ) i u tG t g u t s u e du


 


   (3) 

where the window ( )g u  compactly supports in [ , ]t t  . We 

first consider the mono-component signal model 

 ( )( ) ( ) .i ts t A t e    (4) 

In theory, the STFT is to calculate the Fourier transform of 

( ) ( )g u t s u  in the short time [ , ]t tu t t     . Herein, it is 

necessary to assume that   sufficient small, | ( ) |A t    and 

| ( )|t    for t . With this assumption, the signal (4) can be 

approximately regarded as the purely harmonic signal in a short 
time. According to the Taylor expansion, we can expand the 

( )A u  and ( )u  at the time point t . The related expressions 

are written as ( ) ( )A u A t  and ( ) ( ) ( )( )u t t u t     , 

where the terms on the order ( ( ))O A t  and ( ( ))O t   are 

neglected. Therefore, the signal (4) can be expressed as 

 ( ( ) ( )( ))( ) ( ) .i t t u ts u A t e      (5) 

The signal (5) is substituted into STFT, and then we have 
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where ˆ ()g  denotes the Fourier transform of window ()g  and 

ˆsupp( ) [ , ]g     . It can be known that the STFT of signal 

(5) is consisted by a series of TF coefficients with the same IP 

but the distinct IAs. Due to ˆ ˆ( ) (0)g g  , in the frequency 

direction, the amplitude of the TF coefficients decreasing with 
the increasing distance to the IF trajectory. Meanwhile, the IP 
of the TF coefficients is equivalent to that of the original signal. 
According to this property, it is first suggested to calculate the 

derivative of ( , )G t   with respect to time, 
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Then, the expression (7) leads to (8): for any ( , )t   and for 

which ( , ) 0G t   , a 2D IF estimate ˆ ( , )t   for the STFT 

result (6) can be obtained by 
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In Ref. [7, 8], it has been proved that, put 1/3  , and 

assume   being sufficient small, for ( , )G t    , we have the 

approximation, 

 ˆ ( , ) ( ) .t t       (9) 

The (9) illustrates that, for the weakly time-varying signal (5), 

the IF estimate ˆ ( , )t   can be well approximated to the signal 

true IF. The SST employs a frequency reassignment operator to 
gather the spread TF coefficients, which is expressed as 

 ˆ( , ) ( , ) ( ( , )) .Ts t G t t d      



   (10) 

By the SST operation, the blurry energy of the STFT result 
can be concentrated in a compact region around the IF 
trajectories of each mode. Now, we consider the 
multi-component signal model (2). It is first necessary to 
assume that each mode can be separated by sufficient distance, 

 1( ) ( ) 2k kt t   
     (11) 
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where  2,...,k K . And then, for the signal (2), the Ref. [7, 8] 

also proved the following property, 
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According to (12), each mode can be reconstructed by the TF 
coefficients around their IF trajectories, 
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where ds  denotes the reconstruction bandwidth of the SST. It 

can be seen that the SST operation not only improves the TF 
energy-concentration but also retains the signal reconstruction 
ability. 

Furthermore, we consider the cross-terms of the SST 
representation when addressing multi-component signals. A 
signal consisting of two modes is first modelled as 

 1 2( ) ( )
1 2 1 2( ) ( ) ( ) ( ) ( ) .i t i ts t s t s t A t e A t e      (14) 

Let ( , )kG t   denotes the STFT of the mode ( )ks t . 

Assuming that these two modes are weakly time-varying, i.e., 

| ( ) |kA t    and | ( )|k t    for t . According to the linearity 

property of the STFT, we have the expression, 
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Then, substituting (15) into (8), we obtain the IF estimate, 
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Because ˆ( )g   supports in the region [ , ]   , thus 
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If these two modes satisfy the condition (11), i.e., 

2 1( ) ( ) 2t t      . According to (7), we can have the 

following expression, 
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Then, substituting (18) into (10), we can obtain the SST 
representation as 
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( )

( )

( )
( , ) ( , ) 2 (0) ( )

k
k

k

t
i t

k k kt
G t d G t d g A t e





 


    

  

  
   .(20) 

From (19), it is known that, when these two modes are 
separated with sufficient distances, i.e. satisfying the condition 
(11), the third term of the expression (19) should be equal to 
zero. It means that there are not cross-terms in the SST 
representation. However, the SST representation will produce 
cross-terms, if these two modes are too close or have cross 
points, i.e., 

 2 1| ( ) ( ) | 2 .t t       (21) 

B. Multi-synchrosqueezing transform 

To generate a concentrated TF representation, the SST 
requires to be established on the assumption that the analyzed 
signal should be weakly time-varying. Many studies have 
shown that, when addressing the strong FM signals, the error 
between the IF estimate and the true IF will become larger with 
the increasing signal non-stationarity, which eventually results 
in a blurry SST representation [12-18]. Although the SST 
cannot deal with the strongly time-varying signals very well, a 
factor must be acknowledged that, by using a single SST 
operation, we can obtain a sharper TF representation than the 
STFT result at least. In this case, it is motivated to execute 
another SST operation to the already acquired SST result. Thus, 
we can obtain a much sharper TF result than the SST result. 
Then, by iteratively applying multiple SST operations, the 
energy of the TF result should be concentrated in a step-wise 
manner. With this idea, we propose the method and formulate it 
as 
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where ( , )Ts t   in (10) is now denoted by [1] ( , )Ts t   and N  is 

the iteration number such that 2N  . Because (22) executes 

multiple SST operations to the TF representation iteratively, we 
name this method multi-synchrosqueezing transform (MSST). 
Then, we will provide the detailed mathematical analysis to 
show its effectiveness in concentrating TF energy. Considering 
that the MSST employs an iterative procedure to address the TF 
representation, the main focus is first on the comparison 
between the MSST (N=2) and the original SST. We substitute 

[1] ( , )Ts t   into [2] ( , )Ts t  , and then the MSST (N=2) can be 

expressed as 
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From (23), it can be known that the MSST (N=2) constructs a 

novel IF estimate ˆ ˆ( , ( , ))t t    to reassign the blurry STFT 

result, and then we will prove that this novel IF estimate is more 

suitable for addressing strong FM signals than the ˆ ( , )t  . 

Herein, a more general assumption is first given that   

sufficient small, | ( ) |A t    and | ( ) |t    for t , such that 

the signal (4) can be approximately regarded as the linear chirp 
signal in a short time. According to the Taylor expansion, we 

can expand the ( )A u  and ( )u  at the time point t . The related 
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expressions are written as, respectively, ( ) ( )A u A t  and 
2( ) ( ) ( )( ) 0.5 ( )( )u t t u t t u t         , where the terms on 

the order ( ( ))O A t  and ( ( ))O t   are neglected. Therefore, the 

signal (4) can be rewritten as 

 
2( ( ) ( )( ) 0.5 ( )( ) )( ) ( ) .i t t u t t u ts u A t e         (24) 

Meanwhile, we specify the window function as Gaussian 

function 
20.5( ) tg t e , and then the STFT of signal (24) can be 

derived that, 
2 2

2

2

0.5( ) ( ( ) ( )( ) 0.5 ( )( ) ) ( )

( ) 0.5(1 ( ))( ) ( ( ))( )

( ( ))

( ) 2(1 ( ))

( , ) ( )

( ) ( )

1
( ) .

1 ( )

u t i t t u t t u t i u t

i t i t u t i t u t

t

i t i t

G t e A t e e du

A t e e e d u t

A t e e
i t

   

   

 

 





         



       










 






 (25) 

Then, substituting (25) into (8), the 2D IF estimate of signal 
(24) can be obtained, 

 2

2 2

ˆ ( , )

( ) ( )
( ) ( ( )) ( ( )).

1 ( ) 1 ( )

t

t t
t t i t

t t

 

 
    

 

 
      

  

 (26) 

Because the (26) is a complex value, which cannot be 
directly used for calculation. Therefore, in Ref. [7-9, 14-19], 
they suggest to take the real part of (26) as the IF estimate, and 
then the (26) should be rewritten as 

 
2

2

( )
ˆ ( , ) ( ) ( ( )).

1 ( )

t
t t t

t


    




   


 (27) 

It can be seen that the ˆ ( , )t   cannot provide an unbiased 

estimate for the true IF of the signal (24). The error between 

ˆ ( , )t   and ( )t  i.e., ˆ ( , ) ( )t t   , depends on two factors, 

respectively, the second-order derivative of IP and the distance 
between frequency variable and true IF. For the strong FM 

signals, the item ( )t  cannot be neglected, which lead to that 

the ˆ ( , ) ( )t t    becomes larger and larger with the 

increasing distance between frequency variable and true IF. It is 
the reason that the original SST cannot generate a concentrated 
TF representation for strongly time-varying signals. 

According to (27), we can further obtain the IF estimate of 
the MSST (N=2) as 

 

2

2

22

2

( )
ˆ ˆ ˆ( , ( , )) ( ) ( ( , ) ( ))

1 ( )

( )
( ) ( ( )).

1 ( )

t
t t t t t

t

t
t t

t


      




  




   



 
    

 

 (28) 

Furthermore, we can derive that 

 

2

2

( )
ˆ ˆ ˆ( , ( , )) ( ) ( ( , ) ( ))

1 ( )

ˆ( ( , ) ( )) .

t
t t t t t

t

t t


      



  


   



 

 (29) 

The (29) illustrates that the ˆ ˆ( , ( , ))t t    is much closer to 

the signal true IF than the ˆ ( , )t  , which lead to the MSST 

(N=2) can provide the more concentrated result than the 

original SST. From the viewpoint of the geometry reassignment, 
the differences between SST and the MSST (N=2) are further 
demonstrated in Fig. 1. As shown in Fig. 1(a), it is assumed that 

the ( , )t  is an arbitrary point in the TF plane, which 

corresponds to the TF coefficient ( , )G t  . The SST is to 

reassign the TF coefficient from ( , )t  to the newly calculated 

point ˆ( , ( , ))t t  . The IF trajectory of a purely harmonic signal 

should be a straight line that is parallel to the time axis. Because 
the IF estimate of STFT result for harmonic signal is equal to 

the signal IF, i.e., ˆ ( , ) ( )t t   , the SST operation can 

effectively reassign the TF coefficient from the point ( , )t  to 

the IF trajectory ( , ( ))t t . According to the (27), it is known 

that the ˆ ( , )t   is a biased estimate for the strongly 

time-varying signal IF. Therefore, only single SST operation 
cannot provide enough distance to reassign the TF coefficient 
to the IF trajectory, as shown in Fig. 1(b). Compared with the 
SST, the MSST (N=2) executes one more reassignment for the 

TF coefficient ( , )Ts t   from the point ˆ( , ( , ))t t   to the point 

ˆ ˆ( , ( , ( , )))t t t   . Because the IF estimate ˆ ˆ( , ( , ))t t    is much 

closer to the time-varying signal IF, the MSST (N=2) can 
provide more concentrated TF representation than the SST. 

 

Fig. 1 (a) Reassignment manner of the SST and (b) reassignment 
manner of the MSST. 

If we substitute [2] ( , )Ts t   into [3] ( , )Ts t  , the MSST (N=3) 

can be derived that, 

 

[3] [2] ˆ( , ) ( , ) ( ( , ))

ˆ ˆ ˆ( , ) ( ( , ( , ))) ( ( , ))

ˆ ˆ ˆ( , ) ( ( , ( , ))) ( ( , ))

ˆ ˆ ˆ( , ) ( ( , ( , ( , )))) .

Ts t Ts t t d

G t t t d t d

G t t t t d d

G t t t t d

      

          

           

       









 

 





 

  

  

 





 



(30) 

It can be seen that, the MSST (N=3) construct a novel IF 

estimate ˆ ˆ ˆ( , ( , ( , )))t t t    . If we further substitute 
[ 1] ( , )NTs t   into [ ] ( , )NTs t  , we can calculate the IF estimate 

of the MSST with more iterations, for instance, 
ˆ ˆ ˆ ˆ( , ( , ( , ( , ))))t t t t      is the IF estimate of MSST (N=4), 

ˆ ˆ ˆ ˆ ˆ( , ( , ( , ( , ( , )))))t t t t t       is the IF estimate of MSST (N=5), 

and so on. Therefore, we let [ ]ˆ ( , )N t   denote the IF estimate 

of MSST, and then can rewrite the expression of the MSST as 

 [ ] [ ]ˆ( , ) ( , ) ( ( , )) .N NTs t G t t d      



   (31) 

Moreover, according to (27), the corresponding IF estimate 
of the MSST can also be calculated as 
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2

[ ]

2

( )
ˆ ( , ) ( ) ( ( )).

1 ( )

N

N t
t t t

t


    



 
    

 
 (32) 

It can be known that, by each iteration, the MSST will 
construct a novel IF estimate to reassign the blurry STFT 
energy. It is obvious that, by multiple iterations, the IF estimate 
of the MSST method will be closer and closer to the signal true 
IF. Therefore, the energy of the TF representation can be 
concentrated in a stepwise manner. 

C. Algorithm implementation 

In this section, we mainly consider the algorithm 
implementation of the discrete MSST. The expressions (22) 
and (31) correspond to two distinct implementation way of the 
MSST, respectively. The expression (22) is straight and easy to 
implement just by executing multiple SST operations. However, 
according to the research in [7, 8], the SST operation is a little 
bit time-consuming. The multiple SST operations will bring 
significantly computational burden, which heavily hinders the 
real-time application of MSST in practical engineering. 
However, the expression (31) inspires that, we can first 

construct the IF estimate [ ]ˆ ( , )N t   of the MSST by employing 

the function iteration, and then execute once SST operation to 
reassign the STFT result. This implementation way can highly 
decrease the computational burden, because it only needs to 
execute once SST operation. 

For the discrete data [ ]s l , 0,1,... 1l L  , where L  is the 

number of samples, and the data [ ]s l  correspond to a uniform 

discretization of ( )s t  taken at the time 0nt t lT  , where T  is 

the sampling interval. The Fourier transform of data [ ]s l  is 

calculated by
21

0

[ ] [ ]
L i lm

L

l

S m s l e
 



 , where 0,1,... 1m L  . 

Meanwhile, the discrete STFT is written as 

 
21 [ ]

0

[ , ] [ ] [ ] .
L i m l h

N

l

G h m s l g l h e
  



   (33) 

Then, we can obtain the discrete IF estimate, 

[ 1, ]
Ro Re ln , [ , ] 0

ˆ[ , ] .2 [ , ]

0 , [ , ] 0

N G h m
if G h m

h m i G h m

if G h m

 

    
          




  (34) 

where Ro[]  denotes the round operation and Re[]  denotes 

taking real part. Then, the discrete SST should be written as 

 
1

0

ˆ[ , ] [ , ] [ [ , ]].
L

m

Ts h G h m h m   




   (35) 

Therefore, the discrete version of the expression (22) can be 
written as 
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1
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
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

 (36) 

Meanwhile, the discrete (31) can be written as 

 
1

[ ] [ ]

0

ˆ[ , ] [ , ] [ [ , ]]
L

N N

m

Ts h G h m h m   




   (37) 

The Pseudocode of expressions (36) and (37) can be found in 

Algorithm 1 and Algorithm 2, respectively. In which, h  

denotes the discrete time variable, m  and   denote the 

discrete frequency variable. 
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Choose the window function and iter
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It can be seen that, the Algorithm 1 and Algorithm 2 mainly 
lie into two steps and three steps, respectively. In theory, the 
integral operation in SST is completed by the addition 
operation in addressing discrete signals. The Algorithm 1 has to 
execute multiple SST operations in the Step 2, which can bring 
significantly computational burden when the iteration number 
is large. In Algorithm 2, it first constructs the novel IF estimate 
by employing the substitution operation in the Step 2. 
Eventually, the Algorithm 2 only executes once SST operation, 
which is obviously less time consuming than the Algorithm 1. 
Therefore, we suggest implementing the MSST with the 
Algorithm 2. 

D. Signal reconstruction and ridge detection 

Considering that the MSST reassigns the TF coefficients 
only in the frequency direction and there is no information 
missing, the MSST should allow for the perfect signal 
reconstruction in theory. To prove this, we begin with the 
following expression, 
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

).

(38) 

The (38) illustrates that the original signal can be perfectly 
recovered via 

 
+

1 [ ]

-
( ) (2 (0)) ( , ) .Ns t g Ts t d  





   (39) 

Because the MSST result has the more concentrated TF 
representation than the SST result, each mode also admits the 
following mode decomposition expression, 

 
1 [ ]

( )
( ) (2 (0)) ( , ) .

k

N
k t ds

s t g Ts t d
 

  
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   (40) 

where ds  denotes the reconstruction bandwidth of the MSST. 

According to (40), to decompose a mode from the MSST result, 
it requires the precise IF trajectory of the mode. The method 
described in [22] provides an effective algorithm to detect IF 
trajectory, which is written as 

  2 2 2

1

( )

( , ( )) ( ) ( )
K

k k k
k

E

TFR t t dt t t dt



    
 

 




     
 (41) 

where 
1

( , ( ))
K

k
k

t t

  is the estimation of the IF trajectories in the 

TF plane, and     are two parameters to adjust the level of 

regularization. The (41) suggests that both the energy of TF 
coefficients and the local smoothness of the detected trajectory 
should be considered. The practical implementation of the IF 

detection method in [23] starts from the maximum value in 
each time point of the TF representation, and then employs the 
forward and backward procedures to search the local maximum 
value along the entire TF plane. For the data with large samples, 
this method will bring heavy computational burden. The 
algorithm in [24] suggests that the starting point can be selected 
by the global maximum value of the TF representation, which 
can obviously decrease the computational cost. However, it 
cannot guarantee that the global maximum value precisely 
locates in the true IF trajectory in some cases, which may 
deviate the original intention of the (41). For instance, the large 
fluctuation caused by abnormal event or the heavy background 
noise in the signal may lead to the incorrect starting point. To 
improve both the efficiency and reliability of the IF detection 
procedure, the entire TF plane is suggested to be first separated 
into several segments. The starting point is determined from 
these individual TF segments instead of from global value. 
Then the forward and backward procedures are executed to 
search the IF trajectories, respectively. Eventually, the best IF 
trajectory is selected from these trajectories according to the TF 

energy. Given the TF representation [ , ]Ts h m , it is separated 

into F  segments and there are K  modes needed to be detected. 
The entire ridge detection algorithm combining with the 
mono-component mode reconstruction can be found in 
Algorithm 3. In which, the parameter   is the maximum 
allowable frequency variation. 
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III. NUMERICAL VALIDATION 

In this section, we focus on the comparisons between the 
proposed method and other advanced TFA methods in 
addressing complex signals, for instance, noisy signals, 
multi-component signals with closely separated modes and 
strongly time-varying signals. The comparisons mainly focus 
on the TF energy concentration, TF resolution, signal 
reconstruction and computational time.  

A. Numerical signal with noise 

Herein, a numerical signal consisting of two components 
with distinct IFs is modelled as 

 
1 2

( ) sin(2 (40 sin(1.5 ))) sin(2 (17 6sin(1.5 )))

S S

S t t t t t    
  (42) 

where the mode S2 has stronger FM law than the mode S1. For 
this numerical signal, we add the white noise to it, where the 
SNR (signal to noise ratio) is equivalent to 12 dB. The TF 
representations generated by SST and MSST are shown in Fig. 
2(a-d), and the local zoom of mode S2 follows in the right side. 
It can be seen that, in the SST result, the TF features of weak 
FM mode S1 is as blurry as that of the strong FM mode S2. This 
is because the added noise decreases the IF estimate accuracy 
of the SST, even for the weakly time-varying component. 
However, the MSST still provides the concentrated TF result 
for these two modes.  

For more comparisons, the TF representations generated by 
second-order SST, forth-order SST, RM and DSST are shown 
in Fig. 2(e-l). The second-order SST and forth-order SST are 
established on the more accuracy IF estimate and the TF results 
are shown in Fig. 2(e-h). However, the high-order SST does not 
generate the significantly concentrated results. It can be 
observed that the forth-order SST even generates worse TF 
results than second-order SST, which means that the high-order 
IF estimate does not have a good noise robustness. The RM 
technique is to reassign the spectrogram from TF direction, 
which results into the concentrated image (Fig. 2(i-j)) than the 
SST. For the DSST result in Fig. 2(k-l), we employ the extra 
parameter to demodulate the mode S1. Although the TF 
features of mode S1 is highly concentrated, the mode S2 
appears to be heavily blurry. That is because the selected 
parameter can only demodulate the specified mode, and the TF 
feature of the mode with the distinct FM trend is even worse 
than the SST result. 

To display the TF energy distribution more clearly, we plot 
two TF slices at time t=3.3 s in Fig. 3, which focus on the 
frequency band around mode S1 and mode S2, respectively. 
For the reassigned techniques, the better ability of 
concentrating TF coefficient can generate the TF result with 
narrower energy distribution and larger TF amplitude. For 
instance, the SST is not suitable for addressing strongly 
time-varying mode. It can be seen that the SST result of mode 
S2 has larger energy distribution and lower amplitude than that 
of mode S1. The second-order SST and forth-order SST have 
the same performance in addressing noisy signal. The DSST 
provides a more significantly concentrated TF slice for mode 
S1 than mode S2. It is because we utilize the extra parameter to 
demodulate the mode S1. Because the MSST has the best 

ability of concentrating TF coefficients than other reassigned 
techniques, the corresponding TF slices of modes S1 and S2 
have the narrowest frequency band and the largest TF energy. It 
can be concluded that, the MSST is more suitable for 
addressing time-varying signal with noise than other TFA 
methods. 

 

Fig. 2 (a) SST result, (b) local zoom on SST result, (c) MSST result and 
(d) local zoom on MSST result, (e) second-SST result, (f) local zoom on 
second-SST result, (g) forth-order SST result, (h) local zoom on 
forth-order SST result, (i) RM result, (j) local zoom on RM result, (k) 
DSST result and (l) local zoom on DSST result. 

 

Fig. 3 (a) The TF slices of (a) mode S1 and (b) mode S2 at time t=3.3 s. 
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For more comparisons, we provide the quadratic 
time-frequency distribution (QTFD) results. In Fig. 4, these TF 
results are generated by Wigner-Ville distribution (WVD), 
pseudo WVD (PWVD), reduced-interference distribution with 
triangular kernel (RIDT) and reduced-interference distribution 
with Hanning kernel (RIDH), respectively. It can be seen that, 
affected by the heavy cross-terms, the WVD fails to provide 
useful information for the signal. Although the PWVD roughly 
characterizes the time-varying features of two modes, it also 
produces unexpected cross-terms. The RIDT and RIDH 
generate similar TF results without obvious cross-terms. 
However, these two representations have much larger TF 
energy distribution than the SST techniques. 

 

Fig. 4 (a) WVD result, (b) PWVD result, (c) RIDT result and (d) RIDH 
result. 

Furthermore, to evaluate the energy concentration of 
different TFA methods quantitatively, we calculate the Rényi 
entropies of these TF results and list them in Table I, where a 
lower Rényi entropy value denotes a more concentrated TF 
representation. It is shown that the reassigned techniques can 
provide more concentrated result than the QTFD methods. In 
which, the MSST obviously provides the most concentrated 
result among all TFA methods. 

TABLE I 
RÉNYI ENTROPY BY SEVERAL TFA METHODS 

TFA SST MSST RM 2nd-SST 4th-SST 

Rényi Entropy 11.3117 9.9448 11.222 11.1565 11.5984 

TFA DSST WVD PWVD RIDT RIDH 

Rényi Entropy 11.7265 14.8095 14.6968 14.7741 14.7728 

To decompose these two modes, we first detect the IF 
trajectories, which are shown in Fig. 5. The decomposition 
results are shown in Fig. 6. It can be found that, although both 
of two methods can decompose these two modes, the 
decomposed results of the MSST are much closer to the 
original signal than that of the SST. It is because the blurry 
energy of SST representation results in that the TF coefficients 
belonging to these two modes cannot be enough integrated in a 
compact region. However, if we consider large integration 
region to reconstruct these two modes, it may introduce more 
unexpected noise. Furthermore, we calculate the SNR values of 

two reconstructed modes compared to the numerical signal, 
which are 10.2959 dB (mode S1 by SST), 8.9485 dB (mode S2 
by SST), 14.7645 dB (mode S1 by MSST) and 14.3621 dB 
(mode S2 by MSST), respectively. It can be seen that the SNR 
value of the SST-recovered mode S1 is larger than that of the 
SST-recovered mode S2, which means that the SST performs 
worse reconstruction for strongly time-varying mode. However, 
both of two MSST-recovered modes have large SNR values. 
Therefore, it can be concluded that the energy-concentrated 
TFA method is more suitable for mono-component mode 
decomposition. 

 

Fig. 5 (a) SST-based IF Detection result, (b) MSST-based IF Detection 
result. 

 

Fig. 6 (a) Mode S1 and (b) mode S2 reconstructed by SST result, (c) 
mode S1 and (d) mode S2 reconstructed by MSST result. 

Moreover, we test the reconstruction performance of the 
MSST with respect to iteration number. The analysis results are 
evaluated by the SNR of the superposition of two reconstructed 
modes, which are shown in Fig. 7. It can be seen that more 
iterations can lead to higher SNR reconstructed results. After 
six iterations, the SNR indicates to be stable. 

 

Fig. 7 SNR of the reconstructed results with respect to iteration number 

The efficiency of a TFA method is essential in real-time 
applications, which decides whether or not the method can be 
used in practical engineering. Herein, we test the computational 
time required for the above-mentioned TFA methods in 
addressing this noisy signal. The tested computer configuration 
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is as follows: Intel Core i7-6500 2.5 GHz, 8.0 GB of DDR3 
RAM, Windows 10 OS, and MATLAB version R2016a. The 
required computation times are listed in Table II. It can be seen 
that, all methods can finish the processing within one second. 
With the increase of the iteration number, the calculation time 
of the MSST method does not increase significantly. Although 
we select large iteration number, the computational time of the 
MSST method is still less than the high-order SST methods. 

TABLE II 
REQUIRED COMPUTATIONAL TIME BY SEVERAL TFA METHODS 

TFA SST 2nd-SST 3rd-SST 4th-SST 

Time (s) 0.07 0.12 0.23 0.33 

TFA RM MSST (N=6) MSST (N=30) MSST (N=100) 

Time (s) 0.075 0.071 0.095 0.21 

B. Strongly time-varying signal 

In this section, we consider a strongly time-varying signal to 
analyze, which is borrowed from Ref. [16]. The signal is 
modelled as 

 
1
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( ) sin(2 (340 2exp( 2 0.4)sin(14 ( 0.2))))

sin(2 (75 30 ))
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S

S t t t t

t t

 



    

 





(43) 

where the mode S1 is strongly time-varying and the mode S2 is 
weakly time-varying. 

 

Fig. 8 (a) SST result, (b) local zoom on SST result, (c) second-SST 
result, (d) local zoom on second-SST result, (e) forth-order SST result, (f) 
local zoom on forth-order SST result (g) MSST result and (h) local zoom 
on MSST result. 

The focus is on the TF energy distribution of the proposed 
method and high-order SST methods in addressing the mode S1 
of this noise-free signal. The TF representations and the TF 
slices are displayed in Fig. 8 and Fig. 9, respectively. It can be 
observed that, for mode S2, all methods can provide an 
energy-concentrated result. However, for mode S1, the SST 
result smears heavily. With the increase of the SST order, the 
TF energy becomes more and more concentrated. From the TF 
slice and the local zoom on TF result of mode S1, it is obvious 
that, the MSST result is the most concentrated. 

 

Fig. 9 The TF slices of (a) mode S1 and (b) mode S2 at time t=0.2 s. 

C. Closely-separated multi-component signal 

 

Fig. 10 (a) True IF, (b) STFT result, (c) SST result, (d) local zoom on 
SST result, (e) MSST result and (f) local zoom on MSST result. 

In this section, we consider a numerical signal to test the 
performance of the proposed method in addressing closely 
separated multi-component signal. The signal is modelled as 
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where two modes have the cross point at the time 2.7 s. The true 
IF is plotted in Fig. 10(a). And then the STFT result, SST result, 
MSST result and their local features are displayed in Fig. 
10(b-f). It can be observed that, for the SST result, in the TF 
plane around the cross point, there are heavy cross-terms 
between two modes. Although the MSST result appears to be 
more concentrated, the corresponding TF result cannot 
characterize the true IF trajectories. Therefore, the SST-based 
techniques is more suitable for addressing the signals that can 
satisfy the well-separated condition (11). 

IV. EXPERIMENTAL VALIDATION 

In this section, we mainly consider the applications of the 
proposed method in addressing real-world signals. We select 
two practical signals to show the effectiveness of the MSST by 
comparing with other TFA methods. 

A. Rotating machinery early rub-impact fault vibration signal 
analysis 

In this section, we focus on an abnormal vibration of a heavy 
oil catalytic machine set [2, 25]. The structural sketch is shown 
in Fig. 11. The bearing cases (1#, 2#, 3# and 4#) are used to 
support the corresponding shaft. The vibration sensors are 
mounted on the bearing cases with a sampling frequency of 2 
kHz. It has been known that the vibration in bearing 2# is larger 
than the alarm limitation, which is due to the existence of a 
rub-impact fault between the rotor and the static element. The 
main focus is on the instantaneous TF features of the signal 
recorded from the bearing 2#. The rotation speed of the gas 
turbo is 5381 rpm (where the rotating frequency is 
approximately equal to 90 Hz). 

 

Fig. 11. The structural sketch of the machine set. 

The waveform of the vibration signal and its spectrum are 
shown in Fig. 12. It can be seen that the first-order rotating 
frequency is the largest component, which corresponds to the 
main fault reason. However, the main concern should not only 
be the largest component, but also pay much attention on the 
weak components. It is because the weak components may 
contain more essential information being closely related to the 
early fault features. To enhance the TF features of weak 
components, we display the logarithm of the MSST analysis 
result (see Fig. 13). It can be clearly observed that three modes 
M1, M2 and M3 and their oscillated TF features are 
characterized. Then the ridge detection algorithm is used to 
estimate the IFs of three modes, which are displayed in Figs. 

14-16, meanwhile the spectrum follows to further reveal the 
oscillated frequency of the IF trajectory. 

 

Fig. 12.  The waveform of the vibration signal and its spectrum. 

 

Fig. 13. The logarithm of the MSST analysis result. 

Fig. 14 shows that the IF of mode M1 periodically oscillates 
around first-order rotating frequency with the frequency of 
89.94 Hz. This is because the rub-impact fault makes the rotor 
running at an unstable speed [2, 25]. In Figs. 15-16, the modes 
M2 and M3 are the high-order components, which have weak 
amplitude but show more irregular oscillation characteristics. 
For instance, the 27.34 Hz and 62.5 Hz cannot be found in 
mode M1, but they become the dominant motions in the mode 
M3. It demonstrates that the rub-impact fault should be in the 
early stage, such that it does not cause violently irregular 
vibration of the shaft. However, the irregular high-order motion 
should be paid more attention to avoid the further development 
of the fault and the occurrence of the major failure. The 
concentrated TF result provide an effective way to extract the 
time-varying features of the weak components. 

For comparisons, in Fig. 17, we display the logarithm of TF 
representations generated by SST, RM, second-order SST and 
forth-order SST, respectively. It can be observed that these TF 
results are heavily blurry. It is because the conventional 
SST-based methods cannot provide enough distance to reassign 
the blurry TF coefficients to the true IF region. Meanwhile, the 
corresponding Rényi entropies are listed in Table III. It can be 
concluded that the MSST is able to generate more concentrated 
TF representation than other TFA methods. 

TABLE III 
RÉNYI ENTROPY BY SEVERAL TFA METHODS 

TFA SST MSST RM 2nd-SST 4th-SST 

Rényi Entropy 13.1045 10.5819 13.132 12.8966 13.5596 
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Fig. 14.  The detected IF trajectory of mode M1 and its spectrum. 

 

Fig. 15.  The detected IF trajectory of mode M2 and its spectrum. 

 

 

Fig. 16.  The detected IF trajectory of mode M3 and its spectrum. 
 

 

Fig. 17 The logarithm of (a) SST result, (b) RM result, (c) second-order 
SST result and (d) forth-order SST result. 

B. Rotating machinery bearing outer race fault vibration 
signal analysis 

In this section, we select the bearing vibration signal with 
outer race fault to validate the effectiveness of the proposed 
method. The Case Western Reserve University provides the 

data set [26-27]. The structural sketch is shown in Fig. 18, 
which mainly contains a motor, a torque transducer and a 
dynamometer. The test bearing is used to support the motor 
shaft. A heavy fault is introduced to the bearing outer race via 
electro-discharge machining. Vibration signal is recorded by 
accelerometers, which is placed at the drive end of the motor 
housing. 

 

Fig. 18. The structural sketch of the machine set. 

The waveform and the frequency spectrum of the vibration 
signal are plotted in Fig. 19. It can be seen that, the outer race 
fault results in significantly amplitude-modulated (AM) 
transient features of the time-series signal. Meanwhile, the 
spectrum indicates that the main frequency components are 
around the band 2500 Hz – 4000 Hz.  

 

Fig. 19. (a) Waveform and (b) frequency spectrum of the vibration 
signal. 

To reveal more detailed information on the fault, the main 
focus is on the TF features around 2500 Hz – 4000 Hz. The TF 
representations generated by STFT, SST, second-order SST, 
forth-order SST and MSST are displayed in Fig. 20, and the 
local features are shown in the right side. In Fig. 20(a), the 
STFT roughly characterize the duration time and the frequency 
band of each transient component. However, restricted by 
Heisenberg uncertainty principle, the TF energy of the STFT 
result smears heavily. In Fig. 20(b), faced with strongly AM 
signals, the SST fails to provide concentrated result. In Fig. 
20(c-d), the high-order SST techniques generate much more 
concentrated results comparable to the SST. In Fig. 20(e), the 
MSST provides an obviously concentrated TF result. To 
evaluate the performance of these methods quantitatively, the 
Rényi entropies are calculated and listed in Table IV. It is 
shown that, the SST cannot effectively concentrate the TF 

Motor 
Torque transducer 

Dynamometer 
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energy comparable to STFT. The high-order SST is more 
suitable for addressing strongly AM signal than the SST. The 
MSST result has the lowest Rényi entropy among all TFA 
methods. 

TABLE IV 
RÉNYI ENTROPY BY SEVERAL TFA METHODS 

TFA STFT SST 2nd-SST 4th-SST MSST 

Rényi Entropy 16.8365 15.0888 13.2646 13.8667 11.2013 

 

 

Fig. 20 (a) STFT result, (b) SST result, (c) second-order SST result, (d) 
forth-order SST result and (e) MSST result. 

 

Fig. 21 (a) Detected IFs, (b) mode S1, (c) mode S2 and (d) the 
superposition of two modes. 

 

In Fig. 20(e), the MSST result obviously shows two oscillated 
TF trajectories, which denotes that there should be two 
mono-component modes in the frequency band 2500 Hz – 4000 
Hz. According to the MSST result, we can detect two IFs, 
which is shown in Fig. 21(a). We let S1 and S2 denote these 
two modes. And then, we can reconstruct the time-series 
waveform of two modes, which are plotted in Fig. 21(b-c). To 
validate the reconstructed performance, we also plot the 
superposition of two modes together with the original signal in 
Fig. 21(d), which shows that they are highly consistent.  

To further reveal the detailed features of two modes, we plot 
the waveform of two modes together with their IF trajectories 
in Fig. 22. It is known that, when the motor shaft passes through 
the fault position of the bearing with heavy defect, it will 
produce impulse components in a short time, which eventually 
results in periodic AM transient features in the whole 
time-series signal [27-29]. From the Fig. 22, it can be also 
observed that, both of two IFs show periodically oscillated 
phenomenon, which has the same frequency with the 
appearance of the AM transient features. It is because that, the 
defect in the outer race can also decrease the instantaneous 
speed of the motor shaft, such that it can also cause periodically 
FM law of the fault frequency in the vibration signal. Therefore, 
it can be known that, when a heavy failure appears in the 
bearing, it not only produces periodic AM transient 
components but periodic FM laws also accompany it. The 
concentrated TF representation provides a precise way to 
diagnosis the fault features based on bearing vibration signal. 

 

Fig. 22 (a) Waveform of mode S1 and its IF, (b) waveform of mode S2 
and its IF. 

V. DISCUSSION 

In this section, we mainly focus on the unsolved 
shortcomings and future development of the MSST technique. 

 As an iterative algorithm, the MSST needs to be set the 
termination condition. However, how to stop the iteration is an 
open issue. If we utilize the Algorithm 1 to implement the 
MSST, according to the research of Ref. [12], the Rényi 
entropy can be used for guaranteeing MSST being able to 
adaptively converge to a satisfactory concentration level. For 
instance, the iteration procedure can terminate when there are 
no more evident changes between Rényi entropies of two 
consecutive TF results in the iterative procedure. According to 
(32), with the increasing of the iteration number, two adjacent 
IF estimates will be closer and closer. Therefore, if we utilize 
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the Algorithm 2 to implement the MSST, we can stop the 
iteration when the following condition is satisfied,  

 [ ] [ 1]ˆ ˆ( , ) ( , )N Nt t dtd     
 



 
    (45) 

where   is a small threshold. 
According to the expression (32), no matter how many 

iterations we execute, the IF estimate [ ]ˆ ( , )N t   of the MSST 

is always biased for the signal true IF. In addition, if the chirp 
rate (the second-order derivative of the phase function) of the 
signal is large, the execution of multiple SST will show less 
improvement for the IF estimate. In follows, we use the detailed 
TF features of the numerical signal (42) to illustrate this 
shortcoming of the MSST. For comparison, the ideal TF 
representation of the signal (42) is first given in Fig. 23(a), and 
the local zoom on mode S2 follows in Fig. 23(b). It can be seen 
that, in each time interval, only one frequency bin appears to 
describe the mode S2 in the TF plane. The Figs. 23(c-d) provide 
the MSST result with one hundred iterations. It can be 
obviously observed that, at time t=2.71 s, there are two TF 
points. Even if we execute more iterations, these two points 
cannot be squeezed into one TF point. Furthermore, the 
amplitude of the TF representation at time t=2.71 s is obviously 
lower than signal true amplitude. This phenomena is caused by 

that, the [ ]ˆ ( , )N t   is always a biased estimate for true IF. 

Herein, no matter how many iterations are executed, the points 
that cannot be reassigned into true IF trajectory are named 
non-reassigned point. How to decrease the number of 
non-reassigned points is a challenging task. When the 
non-reassigned points are completely eliminated, the TF result 
will be definitely equivalent to the ITFA representation. 

 

Fig. 23 (a) Ideal TF representation, (b) local zoom on mode S2, (c) 
MSST result and (d) local zoom on mode S2 

The high-order SST is a wonderful technique, which can 
obtain concentrated TF representation in addressing strongly 
time-varying signals. For instance, the second-order SST is 
established on that the signal has linear FM IF. The forth-order 
SST is established on that the signal has the forth-order 
polynomial IF. Therefore, the higher-order SST technique 
should have better performance in addressing the signal with 
more nonstationary IF. The 2D IF estimate of the MSST is only 
established on the framework of the SST and is always biased 

even for linear FM IF. However, the MSST technique in this 
paper is not only to provide an algorithm, but also to provide a 
novel iterative framework for these reassigned methods. A 
natural development is motivated that, we can construct the IF 
estimate based on high-order SST, synchrosqueezing WT or 
synchrosqueezing S transform. Even more, we can propose the 
iterative procedure for RM technique. In theory, these newly 
developed methods based on the iterative procedure should 
have better performance than the original methods. However, 
the relative theorem should be further explored in the feature. 
Therefore, the proposed MSST technique has large 
development space and nice application prospects. The 
MATLAB code that can reproduce all figures in this paper will 
be available soon on the MATLAB Central website: 
https://ww2.mathworks.cn/matlabcentral/fileexchange/68571. 

VI. CONCLUSION 

In this paper, we propose an iterative reassignment procedure 
to improve the energy concentration of the TF representation by 
applying multiple SST operation, which is termed MSST. Such 
a method allows for better addressing a wide variety of 
multi-component signals containing strongly time-varying laws. 
The advantages of the proposed technique are also 
demonstrated through numerical and experimental validations 
comparable to some advanced methods. The comparisons 
illustrate that, the proposed method has the better performance 
in concentrating TF energy and addressing noisy signals than 
other methods. The experimental analysis demonstrates that, as 
a benefit of the concentrated TF features, we can recognize the 
complex physical phenomenon much more precisely. 
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