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A new online region-based active contour model (ORACM) is proposed in this paper. The classical geode-
sic active contour (GAC) model has only local segmentation property, although the Chan–Vese (C–V)
model possesses global. An up-to-date active contour model (ACM with SBGFRLS) proposed in Zhang,
Zhang, Song, and Zhou (2010) both has the properties of global/local segmentation and incorporates
the GAC and the C–V models to raise active contours’ performance on image segmentation. However it
has two major disadvantages. First, it deforms the active contour model just using the gradient of current
level set iteratively and so works too slowly. Second, it needs a parameter a which plays major impact on
the results and to be tuned according to input images. The proposed model ORACM eliminates these two
disadvantages by using a new binary level set formula and a new regularization operation such as mor-
phological opening and closing. Without changing segmentation accuracy, ORACM requires no parameter
and less time over the traditional ACMs. Experiments on synthetic and real images demonstrate that the
computational cost of ORACM with the morphological operations is 3.75 times less than the traditional
ACMs on average.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Robust and fast image segmentation step has a major impact on
results of the applications of consumer (Subašić, Lončarić, & He -di,
2012) and medical image processing (Lai & Chang, 2009; Vard,
Monadjemi, Jamshidi, & Movahhedinia, 2011). Numerous segmen-
tation techniques have been proposed, among which the active
counter model (ACM) (Zhang et al., 2010; Chan & Vese, 2001; Case-
lles, Kimmel, & Sapiro, 1997; Tseng, Hsieh, & Jeng, 2009) is one of
the most successful methods. The main idea of ACM is to delineate
an object outline from a noisy image by minimizing an energy
associated to a sum of an internal and external energy. The existing
ACM methods can be classified into two categories as region-based
(Chan & Vese, 2001; Li, Kao, Gore, & Ding, 2007; Lie, Lysaker, & Tai,
2006; Zhang et al., 2010) and edge-based (Brox, Rousson, Deriche,
& Weickert, 2010; Caselles et al., 1997; Osher & Fedkiw, 2002;
Tseng et al., 2009) models. Region-based approaches derive a coun-
ter representation from a segmentation of the image into well-de-
fined regions, while edge-based methods takes into account the
fact that boundary points can be characterized by a differential
property as image gradient and a counter representation be fitted
to the boundary points. In the region-based approach, first a user
defined curve is determined and then an energy minimization
algorithm is used to deform the active counter model until it fits
objects boundaries. In the edge-based approach, a pixel belongs
to the boundary if it passes a numerical test such as local maxi-
mum of the image gradient (Ronfard, 1994).

Possessing the many advantages over the edge-based ap-
proaches, the region-based approaches are generally preferred.
One advantage is that the region-based models utilize the statisti-
cal information inside and outside the contour to update the active
contour. So they are less sensitive to noise and have better perfor-
mance for images with weak edges or without edges. Second, they
try to detect the exterior and interior boundaries simultaneously
and they are significantly less sensitive to the location of initial
contour (Zhang et al., 2010).

Due to encoding many advantages such as intrinsic, parameter
free and implicit, the level set methods (Brox et al., 2010; Lie et al.,
2006; Osher & Fedkiw, 2002; Zhang et al., 2010) provide a direct
way to estimate the geometric properties of the evolving structure,
can change the topology. The level set methods can be used to effi-
ciently address the problem of curve/surface propagation in an im-
plicit manner. In conclude they provide a very convenient
framework together with the region-based active contour models
to address image segmentation problem.

In this paper, an online region-based active contour model
(named as ORACM) using a new level set formulation is proposed.
In brief, when compared to the traditional ACMs, the advantages of
ORACM can be expressed as providing less time without changing
accuracy ratio and parameter free.

The paper is organized as follows: In Section 2, the classical
ACMs are reviewed. Section 3 describes the formulation of ORACM
and how to construct the region-based ACM. The advantages of
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ORACM over the GAC, C–V and ACM with SBGFRLS models are also
discussed in this section. Section 4 validates ORACM by extensive
experiments on synthetic and real images. Knowledge about
implementation is given in Section 5. In Section 6, limitations of
the ORACM and future work are represented. Section 7 concludes
the paper.

2. The GAC, C–V and ACM with SBGFRLS models

2.1. The GAC model

The GAC model is an edge based active contour model for the
detection of the object boundaries which is based on active con-
tours evolving in time according to intrinsic geometric measures
of the image (Caselles, Kimmel, & Sapiro, 1995; Caselles et al.,
1997). In the GAC model, the following level set formula is used.
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Fig. 1. (a) The Heaviside functi

Fig. 2. An iteration of the
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þrg:r/ ð1Þ

wherer/ is the curvature approximation of the level set / and a is
the balloon force, which controls the contour shrinking or expand-
ing. The GAC model has been extensively employed in pattern rec-
ognition (Chen, Zhou, Wang, & Yang, 2006). The GAC model has
some major disadvantages. One of them is to have a high computa-
tional cost due to the need to compute the gradientrg of curvature
approximation r/ of the current level set / in each iteration. For
this, firstly the first and second derivatives of / by using the central
differences are computed, and then the gradient and curvature
approximation are computed as follows:

/x ¼ / � Gx; Gx ¼ Iðxþ 1; yÞ � Iðx� 1; yÞ
/y ¼ / � Gy; Gy ¼ Iðx; yþ 1Þ � Iðx; y� 1Þ

)
first derivatives ð2Þ
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ACM with SBGFRLS.



Fig. 3. An iteration of ORACM.

Iteration: 0 Iteration:1 Iteration:2 Iteration:3 Iteration:4 Iteration:5 Iteration:6 
Toa:9646, Obj:1 Toa:6051, Obj:49 Toa:3896, Obj:43 Toa:3177, Obj:24 Toa:2868, Obj:19 Toa:2722, Obj:22 Toa:2651, Obj:28

Toa:9646, Obj:1 Toa:6238, Obj:1 Toa:4046, Obj:1 Toa:3437, Obj:1 Toa:3156, Obj:2 Toa:3117, Obj:2 Toa:3055, Obj:2

Toa:9646, Obj:1 Toa:14318, Obj:1 Toa:13651, Obj:1 Toa:13324, Obj:1 Toa:12995, Obj:1 Toa:12662, Obj:3 Toa:12336, Obj:3

Toa:4959, Obj:1 Toa:4959, Obj:1 Toa:4958, Obj:1 Toa:4956, Obj:1 Toa:4952, Obj:1 Toa:4951, Obj:1 Toa:4952, Obj:1

Fig. 4. The segmentation results of the ACMs.
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(a) 
(b)

0th iteration, the total area of the object:0 10th iteration, the total area of the object:29289 20th iteration, the total area of the object:25646

30th iteration, the total area of the object:22502 40th iteration, the total area of the object:19538 50th iteration, the total area of the object:17334

60th iteration, the total area of the object:16306 70th iteration, the total area of the object:14828 80th iteration, the total area of the object:13328

90th iteration, the total area of the object:11110 100th iteration, the total area of the object:7139 110th iteration, the total area of the object:5237

0th iteration, the total area of the object:32400 1th iteration, the total area of the object:16971

2th iteration, the total area of the object:12905 3th iteration, the total area of the object:8529

4th iteration, the total area of the object:5685 5th iteration, the total area of the object:5178

6th iteration, the total area of the object:5062 7th iteration, the total area of the object:5062

Fig. 5. Global segmentation results of (a) the ACM with SBGFRLS (a = 10) (b) ORACM.
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/xx ¼/�Gxx; Gxx ¼ Iðxþ1;yÞþ Iðx�1;yÞ�2� Iðx;yÞ
/yy ¼/�Gyy; Gyy ¼ Iðx;yþ1Þþ Iðx;y�1Þ�2� Iðx;yÞ
/xy ¼/�Gxy; Gxy ¼ Iðxþ1;yÞþ Iðx�1;yÞ�2� Iðx;yÞ
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2

9=
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Because of performing all these calculations in each iteration, the
GAC model has the expense of longer calculation times. The other
disadvantage is that the GAC model is based on gradient and curva-
ture to detect boundary, in which only local information of



Fig. 6. Segmentation results of ACMs in medical images.
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boundary is used. Because of the local attributes and the depen-
dence on gradient, the GAC model is heavily affected by noise
inputs.

2.2. The C–V model

For a given image I in domain u, the level set formulation of the
C–V method (Chan & Vese, 2001), which is based on Mumford Shah
segmentation techniques (Mumford & Shah, 1989), is as follows:

C ¼ fx 2 u : /ðxÞ ¼ 0g
insideðCÞ ¼ fx 2 u : /ðxÞ > 0g
outsideðCÞ ¼ fx 2 u : /ðxÞ < 0g

8>>><
>>>:

ð6Þ

where /(x) denotes level set and C shows active curve in image. To
be able to update the zero level set (/(x) = 0), the C–V method
calculates the corresponding variation level set formulation given
as follows:

#/
#t
¼ dð/Þ lr r/

jr/j

� �
� t� k1ðI � c1Þ2 þ k2ðI � c2Þ2

� �
ð7Þ

where l controls the smoothness of the level set, t increases the
propagation speed, k1 and k2 are fixed parameters, which control
the image data driven force inside and outside the contour. r is
the gradient operator. Hð/Þ and dð/Þ are the Heaviside function
and the Dirac function as shown in Fig. 1(a) and (b), respectively.

In Eq. (7), c1 and c2 are two constants which are the average
intensities inside and outside the contour, respectively and calcu-
lated as follows:

c1ð/Þ ¼
R IðxÞ:Hð/ÞdxR Hð/Þdx

ð8Þ



Fig. 7. The segmentation results by ORACM and the ACM with SBGFRLS model on
synthetic images.

Fig. 8. (a) The initial level set (b) Segmentation result of ORACM.
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c2ð/Þ ¼
R IðxÞ:ð1� Hð/ÞÞdxR ð1� Hð/ÞÞdx

ð9Þ

The C–V model has two major disadvantages. First, as similar to
the GAC model, it also needs to calculate the curvature approxima-
tion r/, which tends to high computational expense. Second, it
possesses only global segmentation property which can segment
the desired object with a proper initial contour. It cannot extract
the interior contour without setting the initial one inside the object
and fails to extract all the objects.
2.3. The ACM with SBGFRLS model

Another region based active contour method is the ACM with
SBGFRLS (Zhang et al., 2010), in which a user-defined active con-
tour is determined at the initialization step and then it is continu-
ously updated by a region-based signed pressure function (SPF)
defined as follows:

spfðIðx; yÞÞ ¼
Iðx; yÞ � c1þc2

2

max Iðx; yÞ � c1þc2
2

�� ��	 
 ð10Þ

where c1 and c2 are defined in Eqs. (8) and (9), respectively. Unlike
the C–V method in the calculation of c1 and c2, the ACM with
SBGFRLS uses the a Heaviside function only with eps = 0. The SPF
function modulates the signs of the pressure force inside and out-
side the region of interest so that the contour shrinks when outside
the object, or expands when inside the object. In addition, the ACM
Table 1
The comparison results for the elapsed time (sec) and the number of iterations.

ORACM1 ORACM2

Time Iteration Time Iteration

Img1 0.365 8 0.284 9
Img2 0.037 5 0.170 5
Img3 0.027 2 0.078 2
Img4 0.051 5 0.111 3
Img5 0.051 7 0.330 7
Img6 0.020 4 0.057 3
Img7 0.267 5 0.163 6
Img8 0.039 7 0.155 7
Img9 0.026 7 0.103 5
Img10 0.020 11 0.107 6
Img11 0.019 4 0.092 5
Img12 0.021 4 0.057 3
Img13 0.022 7 0.129 7
with SBGFRLS uses the corresponding variation level set formula-
tion given as follows:

#/
#t
¼ spfðIðxÞÞ:a:jr/j ð11Þ

where a is a constant and controls the speed of level set update. The
major disadvantage of the ACM with SBGFRLS is that although plays
major impact on the result, it must be tuned according to image.
This situation makes the use of the ACM with SBGFRLS difficult
on different images and impossible on real-time video images. Its
other disadvantage is slowness. |r/| denotes the gradient of the le-
vel set function and is calculated as defined at Eq. (4). Using |r/| at
the level set formulation propagates the result of the SPF function
only on boundary of the level set function. In this case the boundary
of level set is only updated, which causes slowness. For better com-
prehension, an iteration of the ACM with SBGFRLS is illustrated in
Fig. 2.
3. The proposed method (ORACM)

ORACM is a region based active contour method which both re-
quires no parameter and less time without changing segmentation
accuracy over the traditional ACMs. It performs a sort of block
thresholding process in each iteration. This tresholding process
produces rigid boundaries and many small particles, does not be-
long to the object. To remove these small particles and to obtain
smooth and proper object contour, the opening and closing mor-
phological operations are applied respectively.

As similar to the ACM with SBGFRLS, ORACM also uses a user-
defined active contour at the initialization step and then continu-
ously updates it. The level set function is shown as uðxÞ in Fig. 3
ACM with SBGFRLS C–V

Time Iteration Time Iteration

0.915 73 66.451 1932
0.240 46 47.550 3493
0.026 5 0.158 23
0.090 40 1.331 187
0.687 66 20.220 1169
0.120 77 80.983 15049
4.120 266 19.426 475
0.842 93 7.094 289
0.179 44 0.234 19
0.027 40 0.096 48
0.014 14 0.227 74
0.029 18 0.729 130
0.161 90 0.754 133
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and initialized to constants, which have different signs such as �1
and +1 inside and outside the contour. Unlike the ACM with
SBGFRLS, ORACM uses a simple and efficient level set updating for-
mulation as given follows:

#/
#x
¼ HðspfðIðxÞÞÞ:/ðxÞ ð12Þ

where H(.) is the Heaviside function with as is shown in Fig. 1(a)),
spf(.) is the signed pressure function defined at Eq. (10), I(x) denotes
an input image and /ðxÞ denotes the current level set. The signifi-
cance of Eq. (12) and the differences from the level set formulations
of the traditional ACMs can be explained as follows:
� Unlike Eq. (11), it does not require a parameter a which is

needed to be tuned according to input images. This contribution
gives ORACM the property of being an algorithm, needs no
parameter.
� Unlike Eqs. (1) and (7), it does not need to calculate the curva-

ture approximation r/ which tends to the expense of longer
calculation times.
� Due to not having mathematical complexity, it is easily

understandable.
� Unlike Eq. (11), it uses directly current level set /ðxÞ instead of

|r/|. This change propagates the result of the SPF on the entire
current level set /ðxÞ instead of its boundary. This situation
leads to an increase in the current level set update rate without
affecting the accuracy of the algorithm. For better comparison
with the ACM with SBGFRLS, an iteration of ORACM is illus-
trated in Fig. 3 from which we can easily see how quickly the
current level set with a square-shaped turns into the shape of
object in image only at the end of an iteration. Some examples
to show better the effect of this change will be given (see Fig. 4
in Section 5 for example).

Another difference between the ACM with SBGFRLS and ORACM
lies in the smoothing step of the level set function. To smooth up-
dated level set, a Gaussian filter is used at each iteration of the ACM
with SBGFRLS. However, ORACM uses a simple morphological
opening and closing processes instead of Gaussian smoothing. As
we can see from Fig. 4, after the updating process of level set, many
small particles, which do not belong to the object, can occur. All
these particles can be eliminated by the opening process and the
smooth boundaries of objects can be obtained by closing.
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
4. Implementation

To make an accurate comparison, in the all experimentations
performed in this study, two parameters, which are any input im-
age and a used defined initial mask, were used as common for all
the ACMs. In addition, the ACM with SBGFRLS needs one more
parameter, which is (the speed of level set update), given at Eq.
(11). The C–V needs two more parameter l and t defined at Eq. (7).

To make an accurate comparison of the performances, the stop-
ping criterion in all the ACMs is set as internal and external energy
change of object as follows:Z

Hð/ðtÞÞ �
Z

Hð/ðt � 1ÞÞ ¼ 0 ð13Þ

where Hð/ðtÞÞ and Hð/ðt � 1ÞÞ denote the total energy densities at
time t and t � 1 respectively.

All of the ACMs are implemented in Matlab 2011b on a PC with
2.9-GHz Intel(R) Core(TM)2 Duo CPU and 4 GB RAM. Matlab codes
of all algorithms and sample images can be downloaded as a single
file from http://iys.inonu.edu.tr/webpanel/dosyalar/1348/file/
OnlineSeg.rar (xxxx).
5. Experimental results

The first experiment was performed to understand more the ef-
fect of the morphological process in ORACM in comparison with
the classical ACMs. Fig. 4 shows the segmentation results of OR-
ACM and the classical methods for the first six iterations and the
green1 curve shows the boundaries of the current level set in each
iteration. First row shows the results of ORACM without morpholog-
ical operations. As is shown that although ORACM can detect the
boundaries of object quickly, the result has many small particles
and the active contour is not smooth. To remove small objects and
to smooth the active contour, the opening and closing morphological
operations are used respectively. These two operations performed
sequentially are commonly used in computer vision and image pro-
cessing for noise removal and smoothing. Second row shows the re-
sults of ORACM with morphological operations. As can be seen easily
from these results, ORACM is able to detect soft object boundaries
after only six iterations. Third and four rows show the results of
the ACM with SBGFRLS (the parameter a = 25) and the C–V methods,
respectively. The results show that the classical ACMs update the ac-
tive contour slowly. In addition, the value of total area in green
curves is given on image in each iteration. Note that, although this
value surprisingly fluctuates in the classical ACMs, it steadily de-
creases in ORACM.

The second experiment was performed to understand more
speeds of the ACM with SBGFRLS and ORACM in a global segmen-
tation problem. Fig. 5(a) demonstrates the segmentation results of
the ACM with SBGFRLS with a = 10 for an image with two planes.
As shown, it cannot detect the boundaries of the planes after 110
iterations. Fig. 5(b) demonstrates the results of ORACM for similar
image. Note that, without the need of any parameter, ORACM cor-
rectly detects the boundaries of the planes after only seven itera-
tions. This acceleration comes from the use of the proposed level
set formulation defined in Eq. (12).

In the Fig. 6, it is aimed to have a better understanding of the
segmentation accuracy of the classic ACMs and ORACM on four dif-
ferent noisy medical images. The first and second columns show
two magnetic resonance images of the left ventricle and of a hu-
man heart, and the right two columns show two ultrasound images
of the same organ of a human heart. The first row shows the seg-
mentation results of the C–V method which fails to extract inner
region contours in some images. The second and third rows show
the segmentation results of the ACM with SBGFRLS, which fails
to extract contours of all the objects in different areas. The fourth
and fifth row shows the results of ORACM with and without the
morphological process, respectively. Note that the results obtained
for the first and third images by ORACM are quite different, results
from consideration of small particles in the algorithm. Conse-
quently, looking by the results in the fifth row we can say that, OR-
ACM with the morphological process could accurately extract the
boundaries of all objects.

Fig. 7 demonstrates the segmentation accuracy of the ACM with
SBGFRLS and ORACM on the synthetic images. The segmentation re-
sults by ORACM are shown in first row. The segmentation results by
the ACM with SBGFRLS (a = 25) are shown in second row. Note that
the ACM with SBGFRLS cannot detect both the inner region of the
hand at the first column and simple square object, whereas ORACM
can accurately detect inner and outer regions of all synthetic images.

Table 1 represents the comparison results for the elapsed time
and the number of iterations obtained by the ACMs for 13 different
images (can be downloaded from http://iys.inonu.edu.tr/webpan-
el/dosyalar/1348/file/OnlineSeg.rar (xxxx) used in this study. For
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all ACMs, the elapsed time shows the time from the beginning of
algorithm to the absence of any change in current level set. OR-
ACM1 and ORACM2 denote ORACM with or without the morpho-
logical operations respectively. As shown in the first two colons
in Table 1, using these operations causes some slowness. Surpris-
ingly, in some images such as Img2 and Img8, ORACM1 is slower
than ORACM2 although the iteration number of ORACM2 is high.
This is because the small particles in the results of ORACM1 accord-
ing to intensity distribution of input image. Because these particles
may lead to a long-term change of the level set, the completion of
the algorithm takes longer time. However, in the all other images,
ORACM1 is faster than ORACM2. In addition, the classical ACMs
consume excessively high time. The ACM with SBGFRLS is the best
method in conventional methods. However, it can be shown that
the average computational cost of ORACM is approximately 3.75
times less than the ACM with SBGFRLS. In addition, the iteration
number of the classical ACMs is extremely high in comparison with
ORACM. ORACM is constantly changing according to intensity
distributions of the input images. The obtained minimum time
and iteration values for each image in Table 1 are represented as
bold.

6. Limitation of the model and future work

Despite of providing a significant improvement in terms of
speed over the traditional ACMs, ORACM has a major disadvantage
that it supports only bimodal segmentation of piecewise constant
intensity distribution. This deficiency limits the application of OR-
ACM to problems that satisfy these constraints. To exemplify, Fig. 8
shows an example where ORACM would fail to provide an appro-
priate segmentation. In Fig. 8(a), an image with three different col-
ors, in which is exhibited a very high level of inhomogeneity and
the initial contour of ORACM are shown. Fig. 8(b) represents the fi-
nal segmentation result of ORACM. As shown, the obtained result is
not true.

For future study, the extension of ORACM will be investigated to
multi-phase image segmentation by introducing more than two la-
bels to the model.

7. Conclusion

In this paper, we proposed an online region-based active con-
tour model named as ORACM which is implemented by a new level
set formulation, which does not require any extra parameter to be
tuned according to input images. The proposed method can de-
crease the computational complexity without changing the accu-
racy of the image segmentation process. In addition, it can
accurately segment all inside and outside object regions in medi-
cal, real and synthetic images within holes, complex background,
weak edges, and highly noise. These important contributions over
the classical methods such as the GAC, C–V and ACM with SBGFRLS
can provide the proposed method to be favored especially in online
segmentation applications. However, the proposed method
supports only bimodal segmentation of piecewise constant inten-
sity distribution. Extensive experiments on synthetic and real
images demonstrated the advantages according to accuracy and
elapsed time of the proposed method over the classical ACMs hav-
ing the properties of local and global segmentation.
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