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Abstract
The paper deals with a class of parameterized equilibrium problems, where the objec-
tives of the players do possess nonsmooth terms. The respective Nash equilibria can
be characterized via a parameter-dependent variational inequality of the second kind,
whose Lipschitzian stability, under appropriate conditions, is established. This theory
is then applied to evolution of an oligopolistic market in which the firms adapt their
production strategies to changing input costs, while each change of the production is
associatedwith some “costs of change”.We examine both the Cournot-Nash equilibria
as well as the two-level case, when one firm decides to take over the role of the Leader
(Stackelberg equilibrium). The impact of costs of change is illustrated by academic
examples.
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1 Introduction

Consider an oligopolistic market, where the data of the production cost functions and
constraints of each producer/firm are available to all his rivals. In such a case each
producer can compute his optimal non-cooperative Cournot-Nash strategy by solving
the corresponding variational inequality, see [Murphy et al. (1982) and Outrata et al.
(1998)]. It may happen, however, that in the course of time some external parameters
change, e.g., the prices of the inputs or the parameters of the inverse demand func-
tion describing the behavior of the customers. In such a case, the strategies should
be adjusted but, as thoroughly analyzed in Flåm (2020), each change is generally
associated with some expenses, called costs of change. Thus, given a certain initial
strategy profile (productions of all firms), we face then a different equilibrium model,
in which the costs of change enter the objectives of some (or all) producers. Since
these costs are typically nonsmooth, the respective variational inequality, describing
the new non-cooperative equilibrium, becomes substantially more complicated, both
from the theoretical as well as from the numerical point of view. One can imagine
that such updates of strategies are performed repetitively. This leads to a discrete-time
evolution process, where the firms respond to changing conditions by repetitive solu-
tion of the mentioned rather complicated variational inequality (with updated data).
As discussed in (Outrata et al. 1998, Chapter 12), it may also happen that one of the
producers, having an advantage over the others, takes over the role of a Leader and
switches to the Stackelberg strategy, whereas the remaining firms continue to play
non-cooperatively with each other on the lower level as Followers. In this case, our
discrete-time evolution process amounts to repetitive solution of a bilevel game in
which the players possess nonsmooth objectives. Further, it is interesting to note that
the above described model has, in case of positively homogeneous costs of change,
a similar structure as some infinite-dimensional variational systems used in contin-
uum mechanics to model a class of rate-independent processes cf., e.g., (Mielke and
Roubíček (2015)) or (Frost et al. (2019)).

Theplan of the paper is as follows. In the preliminarySect. 2we collect the necessary
background from variational analysis. Section 3 consists of two parts. In the first one
we introduce a general parameter-dependent non-cooperative equilibrium problem
which is later used for modeling of the considered oligopolistic market. By employing
standard arguments, existence of the respective solutions (equilibria) is shown. In
the second part we then consider a parameter-dependent variational system which
encompasses the mentioned equilibrium problem and is amenable to advanced tools
of variational analysis. In this way one obtains a useful stability result concerning the
respective solution map, whose special variants are presented in the Appendix. This
result is used in the sequel but it is important also for its own sake.

Thereafter, in Sect. 4, this equilibrium problem is specialized to a form, corre-
sponding to the oligopolistic market model from Murphy et al. (1982). In this case,
the solution map is indeed single-valued and locally Lipschitzian. In Sect. 5 we then
consider a modification of the 5-firm example fromMurphy et al. (1982) with the aim
to illustrate the role of costs of change and to describe a possible numerical approach
to the computation of the respective equilibria. Whereas Section 5.1 deals with the
noncooperative Cournot-Nash equilibrium, Section 5.2 concerns the situation, when
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one of the firms prefers to apply the Stackelberg strategy. In both cases our main
numerical tool is the forward-backward splitting method described in Facchinei and
Pang (2003) which may easily be adapted to the considered type of problems.

The following notation is employed. For a multifunction F : Rn ⇒ R
m, gph F

signifies the graph of F , δA is the indicatory function of a set A and R = R ∪ {+∞}
is the extended real line. B stands for the unit ball and, for a cone K , K ◦ denotes its

(negative) polar. Finally,
A−→ means convergence within a set A.

2 Background from variational analysis

Throughout the whole paper, we will make an extensive use of the following basic
notions of modern variational analysis.

Definition 1 Let A be a closed set in Rn and x̄ ∈ A. Then

TA(x̄) := Limsup
t↘0

A − x̄

t
= {h ∈ R

n|∃ hi → h, ti ↘ 0 such that x̄ + ti hi ∈ A ∀i}

is the tangent (contingent, Bouligand) cone to A at x̄ ,

̂NA(x̄) := (TA(x̄))◦

is the regular (Fréchet) normal cone to A at x̄ , and

NA(x̄) := Limsup
A

x→x̄

̂NA(x) = {x∗ ∈ R
n|∃ A

xi → x̄, x∗
i ∈ ̂NA(xi ) such that x∗

i → x∗}

is the limiting (Mordukhovich) normal cone to A at x̄ .

In this definition “Limsup” stands for the Painlevé-Kuratowski outer set limit. If A is
convex, then ̂NA(x̄) = NA(x̄) amounts to the classical normal cone in the sense of
convex analysis and we write NA(x̄).

The above listed cones enable us to describe the local behavior of set-valued maps
via various generalized derivatives. Consider a closed-graph multifunction F and the
point (x̄, ȳ) ∈ gph F .

Definition 2 (i) The multifunction DF(x̄, ȳ) : Rn ⇒ R
m , defined by

DF(x̄, ȳ)(u) := {v ∈ R
m |(u, v) ∈ Tgph F (x̄, ȳ)}, u ∈ R

n,

is called the graphical derivative of F at (x̄, ȳ);
(ii) The multifunction D∗F(x̄, ȳ) : Rm ⇒ R

n , defined by

D∗F(x̄, ȳ)(v∗) := {u∗ ∈ R
n|(u∗,−v∗) ∈ Ngph F (x̄, ȳ)}, v∗ ∈ R

m,

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).
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Next we turn our attention to a proper convex, lower-semicontinuous (lsc) function
q : R

n → R. Given an x̄ ∈ dom q, by ∂q(x̄) we denote the classical Moreau-
Rockafellar subdifferential of q at x̄ . In this case, for the subderivative function dq(x̄) :
R
n → R (Rockafellar and Wets 1998, Definition 8.1) it holds that

dq(x̄)(w) = q ′(x̄;w) := lim
τ↘0

q(x̄ + τw) − q(x̄)

τ
for all w ∈ R

n .

In Section 3 we will employ also second-order subdifferentials and second-order sub-
derivatives of q.

Definition 3 Let v̄ ∈ ∂q(x̄). The multifunction ∂2q(x̄, v̄) : Rn ⇒ R
n defined by

∂2q(x̄, v̄)(v∗) := D∗∂q(x̄, v̄)(v∗), v∗ ∈ R
n,

is called the second-order subdifferential of q at (x̄, v̄).

If q is separable, i.e., q(x) = ∑n
i=1 qi (xi ) with some proper convex, lsc functions

qi : R → R, i=1, 2, …, n, then

∂2q(x̄, v̄)(v∗) =
⎡

⎢

⎣

∂2q1(x̄1, v̄1)(v∗
1)

...

∂2qn(x̄n, v̄n)(v∗
n)

⎤

⎥

⎦ ,

where v̄i , v
∗
i are the ith components of the vectors, v̄, v∗, respectively.

Concerning second-order subderivatives (Rockafellar and Wets 1998, Definition
13.3), we confine ourselves to the case when q is, in addition, piecewise linear-
quadratic. This means that dom q can be represented as the union of finitely many
polyhedral sets, relative to each ofwhichq(x) is given in the form 1

2 〈x, Ax〉+〈a, x〉+α

for some scalar α ∈ R, vector a ∈ R
n and a symmetric [n × n] matrix A, cf. (Rock-

afellar and Wets 1998, Definition 10.20).
In this particular case it has been proved in (Rockafellar andWets 1998, Proposition

13.9) that, with v̄ ∈ ∂q(x̄) and w ∈ R
n the second-order subderivative d2q(x̄ |v̄) is

proper convex and piecewise linear quadratic and

d2q(x̄ |v̄)(w) = q ′′(x̄;w) + δK (x̄,v̄)(w), (1)

where

q ′′(x̄;w) := lim
τ↘0

q(x̄ + τw) − q(x̄) − τq ′(x̄;w)
1
2τ

2

is the one-sided second directional derivative of q at x̄ in direction w and K (x̄, v̄) :=
{w|q ′(x̄;w) = 〈v̄, w〉}. For a general theory of second-order subderivatives (without
our restrictive requirements) the interested reader is referred to (Rockafellar and Wets
1998, Chapter 13 B).
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We proceed now to the definitions of two important Lipschitzian stability notions
for multifunctions which will be extensively employed in the sequel.

Definition 4 Consider a multifunction S : Rm ⇒ R
n and a point (ū, v̄) ∈ gph S.

(i) S is said to have the Aubin property around (ū, v̄), provided there are neighbor-
hoods U of ū, V of v̄ along with a constant η ≥ 0 such that

S(u1) ∩ V ⊂ S(u2) + η‖u1 − u2‖B for all u1, u2 ∈ U .

(ii) We say that S has a single-valued and Lipschitzian localization around (ū, v̄),
provided there are neighborhoods U of ū, V of v̄ and a Lipschitzian mapping
s : U → R

n such that s(ū) = v̄ and

S(u) ∩ V = {s(u)} for all u ∈ U .

Further important stability notions can be found, e.g., in Dontchev and Rockafellar
(2014).

Finally we recall an important notion from the theory of monotone operators. Given
a maximal monotone operator T : R

n ⇒ R
n and a positive real c, the mapping

JcT := (I + cT )−1 is called the resolvent of T (with constant c). This mapping
is maximal monotone too, and single-valued over Rn . For other properties of the
resolvent we refer to (Rockafellar and Wets 1998, Chapter 12).

3 General equilibriummodel: existence and stability

Consider a non-cooperative game of l players, each of which solves the optimization
problem

minimize fi (p, xi , x−i ) + qi (xi )
subject to

xi ∈ Ai ,

(2)

i = 1, 2, . . . , l. In (2), xi ∈ R
n is the strategy of the i th player,

x−i := (x1, . . . , xi−1, xi+1, . . . , xl) ∈ (Rn)l−1

is the strategy profile of the remaining players and p ∈ R
m is a parameter, common

for all players. Further, the functions

fi : Rm × (Rn)l → R and qi : Rn → R, i = 1, 2, . . . , l,

are continuously differentiable and convex continuous, respectively, and the sets of
admissible strategies Ai , i = 1, 2, . . . , l, are closed and convex. The objective in (2)
is thus the sum of a smooth function depending on the whole strategy profile x :=
(x1, x2, . . . , xl) and a convex (not necessarily smooth) function depending only on xi .
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Let us recall that, given a parameter vector p̄, the strategy profile x̄ = (x̄1, x̄2, . . . , x̄l)
is a corresponding Nash equilibrium provided

x̄i ∈ argmin
xi∈Ai

[

fi ( p̄, xi , x̄−i ) + qi (xi )
]

for all i .

Denote by S : Rm ⇒ (Rn)l the solution mapping which assigns each p the corre-
sponding (possibly empty) set of Nash equilibria. The famous Nash Theorem (Aubin
1998, Theorem 12.2) yields the next statement.

Theorem 1 Given p̄ ∈ R
n, assume that

(A1) for all admissible values of x−i functions fi ( p̄, ·, x−i ), i = 1, 2, . . . , l, are convex,
and

(A2) sets Ai , i = 1, 2, . . . , l, are bounded.

Then S( p̄) �= ∅.
Suppose from now on that (A1) holds true for all p from an open set B ⊂ R

m . Then
one has that B ⊂ dom S and for p ∈ B

S(p) = {x | 0 ∈ F(p, x) + Q(x)}, (3)

where

F(p, x) =
⎡

⎢

⎣

F1(p, x)
...

Fl(p, x)

⎤

⎥

⎦ with Fi (p, x) = ∇xi fi (p, xi , x−i ), i = 1, 2, . . . , l, and

Q(x) = ∂q̃(x) with q̃(x) =
l

∑

i=1

q̃i (xi ) and q̃i (xi ) = qi (xi ) + δAi (xi ), i = 1, 2, . . . , l.

This follows immediately from the fact that under the posed assumptions the solution
set of (2) is characterized by the first-order condition

0 ∈ ∇xi fi (p, xi , x−i ) + ∂q̃i (xi ), i = 1, 2, . . . , l.

Remark 1 The GE in (3) can be equivalently written down in the form:
For a given p̄ find x̄ such that

〈F( p̄, x̄), x − x̄〉 + q̃(x) − q̃(x̄) ≥ 0 for all x .

Our equilibrium is thus governed by a variational inequality (VI) of the second kind,
cf. (Kinderlehrer and Stampacchia 1980; Facchinei and Pang 2003, page 96).

Next we will concentrate on the (local) analysis of S (given by (3)) under the less
restrictive assumptions that, with s := l n,
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(i) F : Rm × R
s → R

s is continuously differentiable, and
(ii) Q(·) = ∂q̃(·) for a proper convex, lsc function q̃ : Rs → R.

In this way, the obtained results will be applicable not only to the equilibrium
problem stated above, but to a broader class of parameterized VIs of the second kind.
Note that Lipschitzian stability of the generalized equation (GE)

0 ∈ F(p, x) + ∂q̃(x) (4)

has been investigated, among other works, in (Rockafellar and Wets 1998, Chapter
13) even without any convexity assumptions imposed on q̃ . As proved in (Rockafellar
and Wets 1998, Theorem 13.48), S has the Aubin property around ( p̄, x̄) ∈ gph S
provided the adjoint GE

0 ∈ ∇x F( p̄, x̄)T u + ∂2q̃(x̄,−F( p̄, x̄))(u) (5)

in variable u ∈ R
s has only the trivial solution u = 0.

This condition is automatically fulfilled provided ∇x F( p̄, x̄) is positive definite.
Indeed, when we premultiply the adjoint GE (5) by u, one obtains that

0 = 〈∇x F( p̄, x̄)u, u〉 + 〈u, v〉 for some v ∈ ∂2q̃(x̄,−F( p̄, x̄))(u).

Due to the assumptions imposed on q̃ , mapping ∂q̃ is maximal monotone (Rockafellar
and Wets 1998, Theorem 12.17). We can thus invoke (Poliquin and Rockafellar 1998,
Theorem 2.1), according to which

〈u, v〉 ≥ 0 for all v ∈ ∂2q̃(x̄,−F( p̄, x̄))(u).

The result thus follows from the positive definiteness of ∇x F( p̄, x̄).
Let us now derive conditions ensuring the existence of a single-valued and Lips-

chitzian localization of S around ( p̄, x̄). To this purpose we employ (Dontchev and
Rockafellar 2014, Theorem 3G.4), according to which this property of S is implied
by the existence of a single-valued and Lipschitzian localization of the associated
partially linearized mapping Σ : Rs ⇒ R

s defined by

Σ(w) := {x |w ∈ F( p̄, x̄) + ∇x F( p̄, x̄)(x − x̄) + ∂ q̃(x)} (6)

around (0, x̄). This implication leads immediately to the next statement.

Proposition 1 Assume that ∇x F( p̄, x̄) is positive definite. Then S has a single-valued
and Lipschitzian localization around ( p̄, x̄).

Proof Observe first that, by (Rockafellar and Wets 1998, Theorem 13.48), Σ has the
Aubin property around (0, x̄) if and only if (5) has only the trivial solution u = 0
which, in turn, is ensured by the positive definiteness of ∇x F( p̄, x̄). So the assertion
follows from (Dontchev and Rockafellar 2014, Theorem 3G.5) provided the mapping

�(x) := F( p̄, x̄) + ∇x F( p̄, x̄)(x − x̄) + ∂ q̃(x)
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is locally monotone at (x̄, 0), i.e., for some neighborhood U of (x̄,−F( p̄, x̄)), one
has

〈x ′ − x,∇x F( p̄, x̄)(x ′ − x)〉 + 〈x ′ − x, y′ − y〉 ≥ 0 ∀ (x, y), (x ′, y′) ∈ gph ∂ q̃ ∩ U .

This holds trivially due to the posed assumptions and we are done. ��
Under the positive semidefiniteness of ∇x F( p̄, x̄) one can, moreover, derive a

formula for the graphical derivative of S. Indeed, denoting

M(p, x) := F(p, x) + ∂q̃(x),

it is easy to see that condition (4.8) of (Gfrerer and Outrata 2016, Corollary 4.5) is
fulfilled. It follows that for all h ∈ R

m

DS( p̄, x̄)(h) = {k ∈ R
s |0 ∈ DM( p̄, x̄, 0)(h, k)}

= {k ∈ R
s |0 ∈ ∇pF( p̄, x̄)h + ∇x F( p̄, x̄)k + D∂ q̃(x,−F( p̄, x̄))(k)},

where we have employed the sum rule stated in (Dontchev and Rockafellar 2014,
Proposition 4A.2). It remains to make use of (Rockafellar and Wets 1998, Theorem
13.40), thanks to which, under our assumptions, one has for all h ∈ R

m the formula

DS( p̄, x̄)(h) = {k ∈ R
s |0 ∈ ∇pF( p̄, x̄)h + ∇x F( p̄, x̄)k + ∂ϕ(k)}, (7)

where

ϕ(k) := 1

2
d2q(x̄ | − F( p̄, x̄))(k).

Formula (7) is illustrated in the Apendix by a simple example. The graphical derivative
DS( p̄, x̄) can be useful in local analysis of S, e.g., via a continuation method, cf.
(Allgower and Georg 1997).

In some situations the assumption of positive definiteness of ∇x F( p̄, x̄) can be
weakened. The respective statements are presented also in the Appendix.

4 Optimal strategies of producers

As stated in the Introduction, our motivation for a study of mapping (3) came from
an attempt to optimize the production strategies of firms with respect to changing
external parameters like input prices, parameters of inverse demand functions etc.
These parameters evolve in time and the corresponding adjustments of production
strategies have (at least at some producers) to take into account the already mentioned
costs of change. The appropriate variant of the GE in (3) (depending on the considered
type of market) has thus to be solved at each time step with the updated values of
the parameters. In this section we will analyze from this point of view a standard
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oligopolistic market described thoroughly in Murphy et al. (1982) and in (Outrata
et al. 1998, Chapter 12). So, in the framework (2) we will assume that n is the number
of produced homogeneous commodities, p = (p1, p2) ∈ R

m1 ×R
m2 ,m1 +m2 = m

and

fi (p, xi , x−i ) = ci (p1, xi ) − 〈xi , π(p2, T )〉 (8)

with T =
l

∑

i=1
xi . Functions ci : Rm1 × R

n → R represent the production costs of the

i th producer and π : Rm2 × R
n → R is the inverse demand function which assigns

each value of the parameter p2 and the overall production vector T the price at which
the (price-taking) consumers are willing to demand. Additionally, we assume that,
with some non-negative reals βi ,

qi (xi ) = βi‖xi − ai‖, i = 1, 2, . . . , l, (9)

where ||·|| stands for an arbitrary norm inRn . Sets Ai ⊂ R
n specify the sets of feasible

productions and functions qi represent the costs of change associated with the change
of production from a given vector ai to xi . Thus

ai ∈ Ai , i = 1, 2, . . . , l,

are “previous” productions which have to be changed taking into account the “new”
values of parameters p1, p2. Clearly, one could definitely work also with more com-
plicated functions qi . Let us denote the total costs (negative profits) of the single firms
by

Ji (p, xi , x−i ) := fi (p, xi , x−i ) + qi (xi ), i = 1, 2, . . . , l.

In accordance with Murphy et al. (1982) and Outrata et al. (1998) we will now assume
for brevity that n = 1 (so that s = l) and impose the following assumptions:

(S1) ∃ an open set B1 ⊂ R
m1 and open setsDi ⊃ Ai such that for for i = 1, 2, . . . , l

• ci are twice continuously differentiable on B1 × Di ;
• ci (p1, ·) are convex for all p1 ∈ B1.

(S2) ∃ an open set B2 ⊂ R
m2 such that

• π is twice continuously differentiable on B2 × intR+ and π(p2, ·) is strictly
convex on intR+ for all p2 ∈ B2;

• ϑπ(p2, ϑ) is a concave function of ϑ for all p2 ∈ B2.

(S3) Sets Ai ⊂ R+ are closed bounded intervals and at least one of them belongs to
intR+.

Note that thanks to (S3) one has that T > 0 for any feasible production profile

(x1, x2, . . . , xl) ∈ R
l
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and hence the second term in (8) (representing the revenue) is well-defined.
By virtue of (Outrata et al. 1998, Lemmas 12.1 and 12.2) we conclude that,

with fi and qi given by (8) and (9), respectively, and B = B1 × B2, the assump-
tions of Proposition 1 are fulfilled. This means in particular that for all vectors
(a1, a2, . . . , al) ∈ A1 × A2 × . . . × Al the respective mapping S : (p1, p2) �→ x
has a single-valued and Lipschitzian localization around any triple (p1, p2, x), where
(p1, p2) ∈ B1 × B2 and x ∈ S(p1, p2). Under the posed assumptions, however, a
stronger statement can be established.

Theorem 2 Let a ∈ A1 × A2 × . . . × Al . Under the posed assumptions (S1)-(S3) the
solution mapping S is single-valued and locally Lipschitzian over B1 × B2.

Proof Given the vectors ai , i = 1, 2, . . . , l, and the parameters p1, p2, the GE in (3)
attains the form

0 ∈
⎡

⎢

⎣

∇x1c1(p1, x1) − x1∇x1π(p2, T ) − π(p2, T )
...

∇xl cl(p1, xl) − xl∇xlπ(p2, T ) − π(p2, T )

⎤

⎥

⎦

+
⎡

⎢

⎣

Λ1(x1 − a1)
...

Λl(xl − al)

⎤

⎥

⎦ + NA1(x1) × . . . × NAl (xl),

(10)

where

Λi (xi − ai ) =

⎧

⎪

⎨

⎪

⎩

βi if xi > ai
−βi if xi < ai

[−βi , βi ] otherwise.

From (Outrata et al. 1998, Lemma 12.2) and (Rockafellar and Wets 1998, Proposition
12.3) it follows that for any (p1, p2) ∈ B1 × B2 the first mapping on the right-hand
side of (10) is strictly monotone in variable x . Moreover, the second one, as the
subdifferential of a proper convex function is monotone (Rockafellar and Wets 1998,
Theorem 12.17). Their sum is strictly monotone by virtue of (Rockafellar and Wets
1998, Exercise 12.4(c)) and so we may recall (Rockafellar and Wets 1998, Example
12.48) according to which S(p1, p2) can have no more than one element for any
(p1, p2) ∈ B1 ×B2. This, combined with Theorem 1 and the Lipschitzian stability of
S mentioned above proves the result. ��

In fact, under the posed assumptions the changes of the (unique) Cournot-Nash
equilibrium are proportional to (small) perturbations of all data which enter the single-
valued part of GE (10) in the continuously differentiable way. This is a favourable
situation for a possible application of post-optimal analysis when one estimates this
dependence on possibly uncertain data also quantitatively.

In the next section we will be dealing with the mapping Za,p1,p2 : R ⇒ R
l−1

which, for given fixed values of a, p1 and p2, assigns each vector x1 ∈ A1 a solution
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(x2, . . . , xl) of the GE

0 ∈
⎡

⎢

⎣

∇x2c2(p1, x2) − 〈x2∇x2π(p2, T )〉 − π(p2, T )
...

∇xl cl(p1, xl) − 〈xl∇xlπ(p2, T )〉 − π(p2, T )

⎤

⎥

⎦

+
⎡

⎢

⎣

Λ2(x2 − a2)
...

Λl(xl − al)

⎤

⎥

⎦ + NA2(x2) × . . . × NAl (xl).

(11)

Variable x1 enters GE (11) via T (= ∑l
i=1 xi ). Using the same argumentation as in

Theorem 2 we obtain the following result.

Theorem 3 Let ai ∈ Ai for i = 2, 3, . . . , l, p1 ∈ B1 and p2 ∈ B2 be given. Then,
under the assumptions of Theorem 2, mapping Za,p1,p2 is single-valued and locally
Lipschitzian over A1.

This statement enables us to consider the situation when the first producer decides to
replace the non-cooperative by the Stackelberg strategy, cf. (Outrata et al. 1998, page
220). In this case, to maximize his profit, he has, for the given values of a, p1 and p2,
to solve a bilevel game which, in the considered case, amounts to the mathematical
program with equilibrium constraint (MPEC)

minimize c1(p1, x1) − x1π(p2, T ) + q1(x1)
x1

subject to
x−1 is a solution of (11)
x1 ∈ A1.

(12)

Thanks to Theorem 3 problem (12) can be replaced by the (single-level) nonsmooth
minimization problem

minimize Θa,p1,p2(x1)
x1

subject to
x1 ∈ A1.

(13)

In (13), Θa,p1,p2 : R → R is the composition defined by

Θa,p1,p2(x1) = c1(p1, x1) − x1π(p2, x1 + L(Z(x1))) + q1(x1), (14)

where the mapping L : Rl−1 → R is defined by

L(x2, x3, . . . , xl) =
l

∑

i=2

xi .
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and a, p1, p2 amount to fixed parameters. Problem (13) is thus a minimization of a
locally Lipschitzian function to which various numerical approaches can be applied.

5 Numerical methods and results

There are several approaches applicable to the numerical solutionof problems (10),(11)
for fixed values of a, p1, p2 and a, p1, p2, x1, respectively. Thanks to the posed
assumptions, one can choose, for instance, a suitablemethod from (Facchinei and Pang
2003, Chapter 12). Alternatively, the Gauss or Gauss-Seidel (GS) methods described
in Kanzow and Schwartz (2018), coupled with a nonsmooth optimization routine,
could be adapted to this aim and also the general Newton-type method from Gfrerer
and Outrata (2019) can be specialized to (even more general) variational inequalities
of the second kind. In this section we will first describe an implementation of the
forward-backward splitting (FB) method from (Facchinei and Pang 2003, page 1153)
which, due to the separable structure of q, requires essentially only a repetitive solu-
tion of very simple univariate convex optimization problems. Thereafter, in Section
5.1, we will use this method to compute the Cournot-Nash equilibria for data, taken
over from Murphy et al. (1982); Outrata et al. (1998). Finally, in Section 5.2, we will
compute the corresponding “Stackelberg-Cournot-Nash” equilibria via the implicit
programming approach (ImP), where the FB method will be used inside a simple
nonsmooth optimization routine.

Consider nowGE (10),wherewedenote, to unburden the notation, the single-valued
part by Fp1,p2(x) and the multi-valued part by Qa(x). Clearly, the i th component of
Qa amounts to

Qi
a = Λi (xi − ai ) + NAi (xi ), i = 1, 2, . . . , l.

It is easy to see that, given some c > 0, the resolvent Jc Qa of Qa (with constant c) at
an argument z has the value

Jc Qa (z) = y,

where the component yi , i = 1, 2, . . . , l, of y is the (unique) solution of the univariate
optimization problem

minimize 1
2 y

2
i − zi yi + c βi |yi − ai |

subject to
yi ∈ Ai .

(15)

Since problems (15) can easily be solved exactly, we can employ the following (exact)
variant of the FB method, where for the sake of notational simplicity the indices at F
and Q are omitted.
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Algorithm 1 (FB method)
1: initialization: ε > 0, c > 0, k = 0, x0 = (x01 , x

0
2 , . . . , x

0
l ) ∈ A1 × A2 × · · · × Al

2: if dist(−Fi (xki ), Q
i (xki )) ≤ ε for all i = 1, 2, , . . . , l, then

3: stop
4: end if
5: compute zk = xk − cF(xk)
6: for i=1,2,…, l do
7: solve problem (15) arriving at the solution yi
8: end for
9: set xk+1 = y, k = k + 1 and go to 2

By virtue of (Facchinei and Pang 2003, Theorem 12.4.6) the imposed assumptions
ensure that Algorithm 1 is well defined and generates a sequence {xk} converging to
the unique Cournot-Nash equilibrium. Indeed, Fp1,p2 is not only strictly monotone (as
pointed out in the proof of Theorem 2), but even strongly monotone in variable x on
the bounded set A1 × A2 × · · · × Al . This follows from (Outrata et al. 1998, Lemma
12.2) taking into account that the mapping, which assigns x the lowest eigenvalue
of the symmetrized Jacobian of Fp1,p2 , is continuous and applying the compactness
argument. This strong monotonicity implies in particular that Fp1,p2 is co-coercive
on dom Qa(Zhu and Marcotte 1996, Definition 1). Note that the admissible choice of
parameter c is related to the respective modulus of co-coercivity. By (Facchinei and
Pang 2003, Corollary 12.4.8) the sequence {xk} converges in fact at least R-linearly.

5.1 Cournot-Nash equilibria

We consider an example from (Outrata et al. 1998, Section 12.1) enhanced by a
nonsmooth term reflecting the cost of change.We have five firms (i.e., l = 5) supplying
production quantities (productions)

(x1, x2, . . . , x5) ∈ A1 × A2 × · · · × A5

of one (i.e., n = 1) homogeneous commodity to a common market and

A1 = [1, 150], A2 = · · · = A5 = [0, 150].

are production bounds. Further we assume a market characterized by the inverse
demand function

π(γ, T ) = 50001/γ T−1/γ ,

where γ is a positive parameter termed demand elasticity and

T = x1 + x2 + · · · + x5

denotes the total production of all firms. In our tests, however, this parameter will be
fixed (γ = 1). The resulting inverse demand function is depicted in Fig. 1 (left).
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Fig. 1 The inverse demand function π(γ, T ) with γ = 1 (left) and production cost functions ci (xi ), i =
1, . . . , 5, for t = 1 (right)

The production cost functions have the form

ci (bi , xi ) = bi xi + δi

δi + 1
Ki

−1/δi x (1+δi )/δi
i ,

where bi , δi , Ki , i = 1, 2, . . . , 5, are positive parameters. For brevity we assume that
only the parameters bi , reflecting the impact of the input prices on the production
costs, evolve in time, whereas parameters δi , Ki attain the same constant values as in
(Outrata et al. 1998, Table 12.1). The cost of change

qi (xi ) = βi |xi − ai |, i = 1, 2, . . . , 5,

will arise only at firms 1, 2 and 3 with different multiplicative constants

β1 = 0.5, β2 = 1, β3 = 2.

At the remaining firms any change of production does not incur additional costs (β4 =
β5 = 0). We will study the behaviour of the market over three time intervals, t ∈
{1, 2, 3} with the initial productions (at t = 0)

a1 = 47.81, a2 = 51.14, a3 = 51.32, a4 = 48.55, a5 = 43.48,

corresponding to the standard Cournot-Nash equilibrium with the parameters taken
over from Murphy et al. (1982). The production cost functions for t = 1 are depicted
in Fig. 1 (right) and the evolution of parameters bi is displayed in Table 1.

For the computation of the Cournot-Nash equilibria in the single time instances we
used Algorithm 1 with constant c = 2 and the initial iterate x0 = (75, 75, . . . , 75)
in the first time step. In the subsequent time steps we used, as the initial iterate, the
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Table 1 Time dependent input
parameters bi for the production
costs

i 1 2 3 4 5

t=1 bi 9 7 3 4 2

t=2 bi 10 8 5 4 2

t=3 bi 11 9 8 4 2

Table 2 Cournot-Nash equilibria xi , the corresponding negative total costs−Ji (profits) and costs of change
[qi ]

i 1 2 3 4 5

t=0 ai 47.81 51.14 51.32 48.55 43.48

t=1 xi 49.41 51.14 54.24 48.05 43.09

−Ji [qi ] 377.23 [+0.80] 459.95 639.95 [+5.83] 503.44 507.09

t=2 xi 49.41 51.14 54.24 48.05 43.09

−Ji [qi ] 328.62 408.81 537.30 503.44 507.09

t=3 xi 45.71 51.14 51.58 48.76 43.64

−Ji [qi ] 286.75 [+1.85] 379.76 386.92 [+5.31] 527.22 527.81

Cournot-Nash equilibrium from the preceding one (which is justified due to Theorem
2).

We observe the following number of iterations of Algorithm 1 (corresponding to
times t ∈ {1, 2, 3}) with respect to the required accuracy ε:

– {26, 0, 23} iterations for ε = 10−6,
– {34, 0, 31} iterations for ε = 10−8,
– {42, 0, 38} iterations for ε = 10−10.
– {50, 0, 46} iterations for ε = 10−12.
– {59, 0, 54} iterations for ε = 10−14.

The obtained results are summarized in Table 2 and show the productions and profits
(negative total costs) of all firms at single time instances. In parentheses we display
the costs of change which decrease the profits of the firms 1, 2, 3 in case of any change
of their production strategies.

Note that firms 1 and 3 increased significantly their productions in time 1 and
decreased them in time 3, whereas firm 2, due to the cost of change, kept its production
unchanged during the whole time.

Figure 2 shows the total cost functions Ji at time 1. Note that the equilibrium
production of firm 2 lies in a kink point because its cost of change is zero. Expectantly,
functions Ji are smooth for i = 4, 5.

5.2 Stackelberg-Cournot-Nash equilibria

Next we will consider the same market as in the previous section where, however, the
first producer decides now to replace the non-cooperative by the Stackelberg strategy.
The application of the ImP approach leads to problem (13) which is, however, more
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Fig. 2 The total cost functions Ji , i = 1, . . . , 5 and equilibrium productions indicated by bullets for t = 1

complicated than its counterparts solved via this approach in (Outrata et al. 1998,
Chapter 12). Indeed, the presence of costs of change makes the computation of the
lower-level equilibrium more difficult and the objective of the Leader is, in contrast
to Outrata et al. (1998), not continuously differentiable. Generally, the ImP approach
is not applicable provided the mapping Za,p2,p2 is not single-valued and locally Lip-
schitzian. In such a case, different approaches are available, see, e.g., Basilico et al.
(2020). Many further useful references can be found in Dempe (2018).

On the other hand, since n = 1, we may use for the minimization of Θa,p1,p2 any
suitable routine for nonsmooth constrained univariate minimization. In our computa-
tions we used the inbuilt Matlab function fminbnd (Brent 1973).

The obtained results are summarized in Table 3. They are quite different from their
counterparts in Table 2 and show that, switching to the Stackelberg strategy, firm
1 substantially improves its profit. In contrast to the noncooperative strategy, it has
now to change its production at each time step and also firm 2, who preserved in
the Cournot-Nash case the same production over the whole time, is now forced to
change it at t = 3. Of course, our data are purely academic and can hardly be used for
some economic interpretations. On the other hand, the results are sound and show the
potential of the suggested techniques in applications to some more realistic situations.

Remark 2 (Gauss-Seidel method) Alternatively, instead of using the FB method
described in Algorithm 1, we applied both in Sections 5.1 and 5.2 a “nonsmooth”
variant of the Gauss-Seidel (GS) method fromKanzow and Schwartz (2018) using the
same initial iterate and the same ε in the stopping criterion. The univariate problems
solved in the framework of the GS method are more complicated than problems (15)
and, to solve them, we again used the inbuilt Matlab function fminbnd. We obtained
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Table 3 Stackelberg-Cournot-Nash equilibria xi , the corresponding negative total costs −Ji (profits) and
costs of change [qi ]. Firm 1 is a Leader

i 1 2 3 4 5

t=0 ai 47.81 51.14 51.32 48.55 43.48

t=1 xi 54.95 51.14 53.59 47.52 42.68

−Ji [qi ] 380.49 [+3.57] 443.52 619.80 [+4.54] 486.00 491.88

t=2 xi 53.09 51.14 53.59 47.72 42.84

−Ji [qi ] 329.49 [+0.93] 398.58 523.65 492.55 497.60

t=3 xi 53.05 50.46 50.77 48.11 43.14

−Ji [qi ] 289.65 [+0.02] 356.57 [+0.68] 364.33 [+5.64] 505.29 508.71

essentially the same results as those displayed above in Table 2. We observe the fol-
lowing number of iterations of the GS method (corresponding to times t ∈ {1, 2, 3})
with respect to the required accuracy ε- {7, 0, 6} iterations for ε = 10−6, but the
required accuracy was not achieved for smaller values (such as ε = 10−8) . In our
opinion, the FBmethod is favourable, because the convergence of the GSmethod may
be problematic, cf. (Kanzow and Schwartz 2018, Sections 6.3, 6.4).

Remark 3 All numerical results were generated by own Matlab code available for
download at: https://www.mathworks.com/matlabcentral/fileexchange/72771 . The
code is flexible and allows for easy modifications to different models.

Conclusion

In the first half of the paper we have studied a parametrized variational inequality of
the second kind. In this form, one can write down, for example, a condition which
characterizes solutions of some parameter-dependent Nash equilibrium problems. By
using standard tools of variational analysis sufficient conditions have been derived
ensuring the existence of a single-valued andLipschitzian localization of the respective
solution mappings. These conditions can be useful in post-optimal analysis and we
used them in Section 5.2 when computing the Stackelberg-Cournot-Nash equilibria
by the implicit programming approach. Some further stability results concerning GE
(4) are presented in the Appendix below.

The second part of the paper has been inspired, on the one hand, by the successful
theory of rate-independence processes (Mielke and Roubíček 2015; Frost et al. 2019)
and, on the other hand, by the important economic paper Flåm (2020). It turns out that in
somemarket models the cost of change of the production strategy can be viewed as the
economic counterpart of the dissipation energy, arising in rate independent dissipative
models of nonlinear mechanics of solids. Cost of change (dissipation energy) occurs
further, e.g., in modeling the behavior of some national banks who try to regulate the
inflation rate, among other instruments, via buying or selling suitable amounts of the
domestic currency on international financial markets.
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The FB method which we use in Sections 5.1, 5.2 for the computation of Cournot-
Nash and Stackelberg-Cournot-Nash equilibria, respectively, seems to fit well the
structure of GE(10) and GE(11). Due to the separability of q, namely, the computation
of the appropriate resolvent reduces to l exact formulas, which makes the computa-
tional effort per iteration very low. Of course, if the number of produced commodities
increases, we will have to solve problems (15) via a suitable nonsmooth minimization
technique.

Acknowledgements The authors are deeply indebted to both Reviewers and the Associated Editor for
their careful reading and numerous important suggestions. The also benefited from valuable advices of T.
Roubíček.

APPENDIX

In somemodels of practical importance function q is piecewise linear-quadratic. Then
the assumption of positive definiteness of∇x F( p̄, x̄) in Proposition 1 can be somewhat
relaxed.

Proposition 2 Assume that q̃ is convex, piecewise linear-quadratic and the mapping
Ξ : Rs ⇒ R

s defined by

Ξ(w) := {

k ∈ R
s |w ∈ ∇x F( p̄, x̄)k + ∂ϕ(k)

}

(16)

with ϕ(k) := 1
2d

2q(x̄ | − F( p̄, x̄))(k) is single-valued on R
s . Then S has a single-

valued and Lipschitzian localization around ( p̄, x̄).

Proof By virtue of (Dontchev and Rockafellar 2014, Theorem 3G.4) it suffices to
show that the single-valuedness of Ξ implies the existence of a single-valued and
Lipschitzian localization of Σ (defined in (6)) around (0, x̄). Clearly,

gphΣ =
{

(w, x)

∣

∣

∣

∣

∣

[

x − x̄

w − ∇x F( p̄, x̄)(x − x̄)

]

∈ gph ∂ q̃ −
[

x̄

− F( p̄, x̄)

]}

so that Σ is a polyhedral multifunction due to our assumptions imposed on q̃ , cf.
(Rockafellar and Wets 1998, Theorem 12.30). It follows from Robinson (1976) (see
also (Outrata et al. 1998, Cor.2.5)) that due to the polyhedrality of Σ , it suffices to
ensure the single-valuedness of Σ(·) ∩V on U , where U is a convex neighborhood of
0 ∈ R

s and V is a neighborhood of x̄ . Let us select these neighborhoods in such a way
that

gph ∂q̃ −
[

x̄

− F( p̄, x̄)

]

= Tgph ∂q̃(x̄,−F( p̄, x̄)),
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Fig. 3 The set in equilibria S(p1, p2) (left) and the graphical derivative DS( p̄, x̄)(h1, h2) of Example 1

which is possible due to the polyhedrality of ∂q̃. Then one has

gphΣ ∩ (U × V) = {(w, x̄ + k) ∈ U
×V|w ∈ ∇x F( p̄, x̄)k + D∂ q̃(x̄,−F( p̄, x̄))(k)}.

Under the posed assumptions for any k ∈ R
n

D∂q̃(x̄,−F( p̄, x̄))(k) = ∂ϕ(k),

cf. (Rockafellar andWets 1998, Theorem 13.40), so that gphΣ ∩ (U ×V) = {(w, x̄ +
k) ∈ U×V|(w, k) ∈ gphΞ}. Since D∂q̃(x̄,−F( p̄, x̄))(·) is positively homogeneous,
∂ϕ(·) is positively homogeneous as well and so the single-valuedness of Σ(·) ∩ V on
U amounts exactly to the single-valuedness of Ξ on Rs . ��

On the basis of (Rockafellar andWets 1998, Proposition 13.9) the single-valuedness
of Ξ can be ensured via the notion of copositivity. Recall that an [s × s] matrix H is
strictly copositive with respect to a cone K ⊂ R

s provided

〈d, Hd〉 > 0 for all d ∈ K, d �= 0.

Proposition 3 Assume that q̃ is convex, piecewise linear-quadratic and q̃ ′′(x̄; ·) is
convex. Further suppose that ∇x F( p̄, x̄) is strictly copositive with respect to K − K,
where

K := {k|q̃ ′(x̄; k) = 〈−F( p̄, x̄), k〉}.

Then S has a single-valued and Lipschitzian localization around ( p̄, x̄).
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Proof By virtue of (Rockafellar and Wets 1998, Proposition 13.9) the second sub-
derivative d2q̃(x̄ | − F( p̄, x̄))(·) is proper convex and piecewise linear-quadratic and
one has

∂ϕ(k) = ∂
1

2
d2q̃(x̄ | − F( p̄, x̄))(k) = ∂

1

2
q̃ ′′(x̄; k) + NK (k). (17)

It remains to show that mapping (16) is single-valued. Clearly, the GE in (16) can be
written down in the form

0 ∈ Ψ (k) − w + NK (k),

where the multifunctionΨ (k) := ∇x F( p̄, x̄)k+∂ 1
2 q̃

′′(x̄; k).As explained in (Outrata
et al. 1998, Theorem 4.6), under the posed assumptions there is a positive real α such
that

〈d,∇x F( p̄, x̄)d〉 ≥ α||d||2 for all d ∈ K − K .

It follows that for all k1, k2 ∈ K , ξ1 ∈ ∂ 1
2 q̃

′′(x̄; k1), ξ2 ∈ ∂ 1
2 q̃

′′(x̄; k2) and
η1 = ∇x F( p̄, x̄)k1 + ξ1 − w, η2 = ∇x F( p̄, x̄)k2 + ξ2 − w,

one has

〈η1 − η2, k1 − k2〉
= 〈k1 − k2,∇x F( p̄, x̄)(k1 − k2)〉 + 〈ξ1 − ξ2, k1 − k2〉 ≥ α||k1 − k2||2.

We conclude that � is strongly monotone on K and, consequently, Ξ is single-valued
by virtue of (Rockafellar and Wets 1998, Proposition 12.54). ��
Example 1 Put m = 2, s = 1 and consider the GE (4), where

F(p, x) = p1 + p2x, q̃(x) = |x | + δA(x), A = [0, 1]
and the reference pair ( p̄, x̄) = ((−1, 1), 0). Since ∇x F( p̄, x̄) = 1, Proposition 1
applies and we may conclude that the respective mapping S has indeed the single-
valued and Lipschitzian localization around ( p̄, x̄).

To compute DS( p̄, x̄), we may employ formula (7), where ∂ϕ is computed accord-
ing to (17). One has K (x̄, v̄) = R+, q̃ ′′(x̄, w) = 0 for any w ∈ R+ and so we obtain
that

∂ϕ(k) = NR+(k).

This yields the formula

DS( p̄, x̄)(h) = {k ∈ R|0 ∈ h1 + k + NR+(k)}
valid for all h ∈ R

2. Both mappings S and DS( p̄, x̄) are depicted in Fig.3. �
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