
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=geno20

Engineering Optimization

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/geno20

Solution of optimal reactive power dispatch
problem using pathfinder algorithm

Hamza Yapici

To cite this article: Hamza Yapici (2020): Solution of optimal reactive power dispatch problem
using pathfinder algorithm, Engineering Optimization, DOI: 10.1080/0305215X.2020.1839443

To link to this article:  https://doi.org/10.1080/0305215X.2020.1839443

View supplementary material 

Published online: 16 Nov 2020.

Submit your article to this journal 

Article views: 27

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=geno20
https://www.tandfonline.com/loi/geno20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0305215X.2020.1839443
https://doi.org/10.1080/0305215X.2020.1839443
https://www.tandfonline.com/doi/suppl/10.1080/0305215X.2020.1839443
https://www.tandfonline.com/doi/suppl/10.1080/0305215X.2020.1839443
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2020.1839443
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2020.1839443
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2020.1839443&domain=pdf&date_stamp=2020-11-16
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2020.1839443&domain=pdf&date_stamp=2020-11-16


ENGINEERING OPTIMIZATION
https://doi.org/10.1080/0305215X.2020.1839443

Solution of optimal reactive power dispatch problem using
pathfinder algorithm

Hamza Yapici

Ereğli Vocational School, Necmettin Erbakan University, Konya, Turkey

ABSTRACT
The optimal reactive power dispatch (ORPD) problem, as a subproblem
of optimal power flow, has significant effects in providing reliability and
economic operation. In this article, a modified version of the pathfinder
algorithm (PFA), which is inspired by the collective movement of a swarm
led by one member, is proposed for solving the ORPD problem. The objec-
tive of this study is to minimize the power losses by adjusting the con-
trol variables. Numerical analyses are performed on 57-bus and 118-bus
power systems. To show the performance and effectiveness of the mod-
ified pathfinder algorithm (mPFA), some well-known methods are used
for comparison. Statistical tests are performed to assess the consistency
and ranking of the proposed method. The results show that the mPFA
achieved competitive results and obtained a competitive ranking with sta-
tistical analyses. The simulations show that the proposedmethod could be
a superior algorithm for solving the ORPD problem.
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1. Introduction

The optimal reactive power dispatch (ORPD) problem has a key role in the operation and control
of power systems owing to its significant effects on reliability and economical management. In this
problem, settings of control variables are adjusted to optimize a certain object, taking into account the
equality and inequality constraints. Therefore, the ORPD problem, a subproblem of optimal power
flow, is modelled using mixed-integer nonlinear programming (Khazali and Kalantar 2011).

The difficulties of adjusting the parameters for electric power networks have led researchers to pro-
pose new optimization approaches aswell as the constraint handlingmethods. Optimizationmethods
are used to define the optimal value of control variables, while constraint handling methods assist
these methods to overcome the limitations. Besides mathematical approaches, heuristic algorithms
for optimization are attractive to researchers in terms of solving the ORPD problem. In the liter-
ature, many techniques have been proposed to solve the ORPD problem, such as evolutionary and
heuristic-based techniques, resulting in high-quality solutions. Some of thesemethods can be listed as
follows: genetic algorithm (GA) (Durairaj, Devaraj, and Kannan 2006), improved genetic algorithm
(IGA) (Devaraj and Roselyn 2010), evolutionary programming (EP) (Wu and Ma 1995), differential
evolution (DE) (Varadarajan and Swarup 2008), modified teaching–learning algorithm with differ-
ential evolution (MTLA-DE) (Ghasemi et al. 2014), gravitational search algorithm (GSA) (Duman et
al. 2012), big bang–big crunch (BB-BC) (Zandi, Afjei, and Sedighizadeh 2012), particle swarm opti-
mization (PSO) (Zhao, Guo, and Cao 2005), seeker optimization algorithm (SOA) (Dai et al. 2009),
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artificial bee colony (ABC) (Le Dinh, Vo Ngoc, and Vasant 2013), comprehensive learning parti-
cle swarm optimization (CLPSO) (Mahadevan and Kannan 2010), particle swarm optimization with
an ageing leader and challengers (ALC-PSO) (Singh, Mukherjee, and Ghoshal 2015), chaotic krill
herd algorithm (CKHA) (Mukherjee and Mukherjee 2016), grey wolf optimizer (GWO) (Sulaiman
et al. 2015), moth–flame optimizer (MFO) (Mei et al. 2017), ant lion optimizer (ALO) (Mouassa,
Bouktir, and Salhi 2017), backtracking search (BS) method (Shaheen, El-Sehiemy, and Farrag 2018),
whale optimization algorithm (WOA) (Medani, Sayah, and Bekrar 2018), Gaussian bare-bones water
cycle optimizer (GBBWCO) (Heidari, Abbaspour, and Jordehi 2017), Jaya optimization algorithm
(JAYA) (Barakat et al. 2018; Das et al. 2020), improved social spider algorithm (ISSA) (Nguyen
and Vo 2019), improved ant lion optimizer (IALO) (Li et al. 2019), modified version of sine–cosine
method (ISCA) (Abdel-Fatah, Ebeed, and Kamel 2019), success history-based adaptive differential
evolution (SHADE) (Biswas et al. 2019), tree seed algorithm (TSA) (Üney and Cetinkaya 2019),
enhanced Jaya optimizationmethod (e-JAYA) (Barakat et al. 2019), modified stochastic fractal search
algorithm (MSFSA) (Nguyen et al. 2019) and a modified version of differential evolution (DEa-AR)
(Awad et al. 2019). Also, some different approaches are semi-definite programming (SDP) (Davoodi
et al. 2019) and tight-and-cheap conic relaxation approach (TCCR) (Bingane, Anjos, and Le Digabel
2019).

Evolutionary-based approaches have key abilities to obtain global optima and handle non-convex
as well as discontinuous objectives. However, these approaches have disadvantages in solving the
ORPDproblem. They are insufficient in analysing discrete or integer problems andmay not be able to
find the optimal solution in finite time. Furthermore, the swarm intelligence (SI)-basedmethods have
fewer operators to be adjusted and adapt easily with minimum revision for different areas. But they
are highly redundant and it is difficult to enforce control over the herds. Their complex systems cause
unforeseeable results and take time owing to their rich hierarchies (Ayan and Kılıc 2012; Saddique et
al. 2020).

Among these approaches, several recently introduced methods can be explained as follows. A
modified version of PSO handling a pseudo-gradient search method (PSO-IPGS) was proposed by
Polprasert, Ongsakul, and Dieu (2016). The simulations have been performed on 30-bus and 118-
bus test systems. Using this approach, PSO determines an effective direction. PSO-IPGS outperforms
all other versions. However, PSO and its modified versions cannot generate high-quality solutions
using low population size or iteration numbers. In terms of low population size, they can become
stagnated. Moreover, they are highly dependent on the initial parameters. Nguyen et al. (2019) pro-
posed a modified stochastic search algorithm (MSFS), making three changes in three new solution
generations of the original version of this algorithm. In the first generation, only one equation is used
and the other one is eliminated; however, in the second and third generations, a new method for
generating new solutions is introduced. Using the new technique, the proposed method shows better
performance than the original version. Furthermore, old solutions are modified to be updated. The
proposed method was tested on 30-bus and 118-bus test systems. Although these additional modi-
fications provide a shorter computational time than the original version, the results have not given
sufficient evidence for comparing the computation time with other methods. The proposed method
produced high-quality solutions in the early stages of the process, but it was not able to effectively
generate new solutions over the course of iterations. Li et al. (2019) proposed the IALO to solve the
ORPD problem. The authors introduced two improvements. The first improvement is to use a new
technique instead of roulette wheel selection. This improvement separates all solutions into potential
and non-potential groups. A new formula is applied with the second improvement to speed up the
process, reduce the number of computation steps and decrease implementation time. This method
was tested on 30-bus, 57-bus and 118-bus test systems. IALO outperformed all other methods in
comparison of computational time. However, these modifications may cause the individual to move
towards any non-promising area.

In addition, different constraint handling methods have been used, such as the quadratic penalty
function, adaptive penalty function and alternative penalty function, to handle all equality and
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inequality constraints. But adaptive and alternative constraint handling methods contain fewer vari-
ables. This causes solutions with low quality to be generated. Also, the quadratic penalty function
is time consuming in finding the optimal values and significantly affects the solution in large-scale
problems.

This article proposes a new method, named the modified pathfinder algorithm (mPFA), to solve
the ORPD by optimizing the adjustable control variables. The pathfinder algorithm (PFA) is a novel
metaheuristic method which was originally developed by Yapici and Cetinkaya (2019). The PFA has
been applied to several research areas in terms of its ability tomake the transition between exploration
and exploitation, avoiding local optima and achieving a better convergence rate. The PFA has been
used for network reconfiguration problems (Nguyen et al. 2020), and automatic generation control
with tilt–integral-derivative (TID) and proportional–integral-derivative (PID) (Priyadarshani, Sub-
hashini, and Satapathy 2020). However, the PFA has a key disadvantage in that its searching ability
decreases in extremely high dimensions. In an effort to improve the performance of the PFA, several
versions have been introduced, such as modified PFA with DE, in view of convergence speed and
avoidance of local optima (Qi, Yuan, and Song 2020), and improved PFA using a quasi-oppositional
learning mechanism to improve the convergence speed and chaos theory to improve the exploration
part (Yuan, Li, and Yousefi 2021). The particles of the PFA are led by a leader member, which is
completely different from the follower members in terms of its mathematical model. This difference
facilitates the transition between exploration and exploitation. The followers move towards the next
position in a non-regular order, and thus, they can explore the search space effectively. Therefore, the
PFA has a robust capability to solve optimization problems and can find better solutions. The PFA
is introduced as a simple method, easily adapting to optimization problems as it has several param-
eters that can be adjusted, and is more effective in converging to the global optimum. Because of
the reduced performance of the PFA in high dimensions, several modifications for parameters have
been proposed to generate better solutions. The intention here is to modify the original PFA without
making too many changes to the general mechanism.

The simulations were performed on the Institute of Electrical and Electronics Engineers (IEEE)
57-bus and 118-bus test systems. The objective is to minimize the power loss of these power systems.
The quadratic penalty function was used for handling the constraints. Owing to the characteristics
of the mPFA, it can overcome the disadvantages explained above and achieve competitive results in
numerical analysis. Moreover, some statistical tests were carried out to rank the proposed method
and assess its consistency: the Kolmogorov–Smirnov test, Friedman test and Wilcoxon test (Pesaran
and Timmermann 1992; Simard and L’Ecuyer 2011; Zimmerman and Zumbo 1993). To the author’s
knowledge, the Kolmogorov–Smirnov test is used for the first time in this area. The outstanding
contributions of this study can be summarized as follows:

(1) To minimize power loss of power systems in the context of providing reliability and economic
operation, the modified version of the PFA is proposed for the first time in solving the ORPD
problem.

(2) To overcome premature convergence and the stagnation in local optima to achieve better per-
formance with high-quality solutions, the parameters of the PFA are modified without changing
the general mechanism.

(3) The conventional quadratic penalty handling method is considered for an effective and com-
petitive comparison by including bus voltage, reactive power of generators and line constraints,
although it is time consuming.

(4) According to the numerical results on different IEEE power systems, themPFA could obtain bet-
ter results than the PFA and other methods in the context of reducing power losses. It could also
outperform other recently introduced methods in terms of convergence and statistical results.

The remainder of this article is arranged as follows. The formulation of ORPD is explained in
Section 2; a short explanation of the PFA and its modification is then presented in Section 3 and the
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implementation of the proposed method is explained in Section 4. Sections 5 and 6 comprise the
results and discussions of the study. Finally, Section 7 includes the conclusions.

2. Formulation of the ORPD problem

The ORPD problem has an important role in operating and controlling power systems. It includes
some parameters to be adjusted, such as the tap settings of transformers, shunt capacitors and voltage
magnitude, named the control parameters. The tap settings of transformers and shunt capacitors are
discrete or integer values. However, voltage magnitude is assumed as a continuous variable (Dai et al.
2009; Yapıcı and Çetinkaya 2017). The ORPD problem, known as a complexmixed-integer nonlinear
optimization problem, can be defined as follows:

Minimize f (�x, �X)

Subject to G(�x, �X) = 0
H(�x, �X) ≥ 0

(1)

where �x is the vector of control variables, �X is the vector of dependent variables, and f is the objective
function. Here, �x = [VGTQC]T and �X = [VLQGS]T . Also, G is the equality constraint and H is the
inequality constraint. The equality constraints consist of the balanced equations of active and reactive
powers, whereas inequality constraints include the voltage of generators, tap setting of transformers
and capacity of compensators (Mei et al. 2017). The objective function was solved subject to various
equality and inequality constraints in theORPDproblem. The formulations of equality and inequality
constraints are given in Equations (2) and (3), respectively. The equality constraints formulated in
Equation (2) are the active and reactive power balance equations. By satisfying these conditions, the
voltage and the frequency of buses in a power system can be adjusted. Thus, stable working can be
guaranteed for a power system. The first formula is the active power balance equation and the second
one is the reactive power balance equation. The constraints imposed in Equation (3) are inequalities
used for the limitation of reactive power sources, tap setting of transformers, active power generations,
reactive power generations, bus voltages and line flows (Yapıcı and Çetinkaya 2017).

PGi − PDi = Vi
∑
j∈Ni

Vj(Gij cos θij + Bij sin θij), iεNO

QGi − QDi = Vi
∑
j∈Ni

Vj(Gij sin θij − Bij cos θij), iεNQ (2)

Qmin
Ci ≤ QCi ≤ Qmax

Ci , iεNC
Tmin
i ≤ Ti ≤ Tmax

i , iεNT
Vmin
Gi ≤ VGi ≤ Vmax

Gi , iεNG
Pmin
Gi ≤ PGi ≤ Pmax

Gi , iεNG
Qmin
Gi ≤ QGi ≤ Qmax

Gi , iεNG
Vmin
Li ≤ VLi ≤ Vmax

Li , iεNB
SKi ≤ Smax

Ki , iεNK

(3)

wherePGi is the active power generated,PDi is the power demanded,Ni is the number of neighbouring
buses,NO is the number of total buses not including the slack bus,NQ is the number of PQ buses,QGi
is the reactive power generated, QDi is the reactive power demanded, Gij and Bij are the conductance
and susceptance between buses i and j, respectively, QCi is the value of shunt capacitor i, Ti is the tap
setting of transformer i,VGi is the voltage of generator i,VLi is the voltage of load bus i, SKi is the load
flow in branch i, NC is the number of shunt capacitors, NT is the number of transformers, NG is the
number of generators, NB is the number of buses, and NK is the number of branches.
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The control variables are self-constrained. However, dependent variables such as reactive power
injected by PV buses, voltage magnitudes of PQ buses and power flow limits are added as penalty
terms to the objective function. It is important to mention here that the active power outputs of gen-
erators are determined before the process and dedicated as input data. Finally, the objective function
and fitness function can be expressed as the formulae given in Equations (4) and (5), respectively (Li
et al. 2019).

f = min Ploss =
NB∑
i=1

NB∑
j=1,j�=i

gij(V2
i + V2

j − 2ViVj cos θij) (4)

f ′ = f + μv
∑
Nlim
v

ΔV2
L + μq

∑
Nlim
q

ΔQ2
G + μs

∑
Nlim
s

ΔS2i (5)

where f ′ is the fitness function, Ploss is total power loss, i is the index of buses, j is the index of buses
neighbouring bus i, gij is the conductance between buses i and j, Vi is the voltage of bus i, Vj is the
voltage of bus j, θij is the angle between buses i and j, μv, μq and μs are constants and are chosen as
1000, andNlim

v ,Nlim
q andNlim

s are the number of load buses, generators and branches taken out of lim-
its, respectively. If VL < Vmin

L , then ΔVL = Vmin
L − VL, and if VL > Vmax

L , then ΔVL = VL − Vmax
L .

Therefore, if QG < Qmin
G , then ΔQG = Qmin

G − QG, and if QG > Qmax
G , then ΔQG = QG − Qmax

G .
Finally, if Si > Smax

i , then Si = Si − Smax
i . Here, ‘min’ and ‘max’ are the minimum and maximum

values, respectively. Furthermore, when the dependent variables obtained after power flow exceed
their limits, they are added to the objective function as penalty terms. Otherwise, the penalty terms
would be equal to zero.

3. Pathfinder algorithm (PFA)

The PFA is an SI-basedmethod inspired by the collectivemovement of swarmswith a leadermember.
This method allows all members of swarm to explore the search space randomly, while they decide
to move towards any location by following the leader. When a member locates in the most promising
area, then this individual is chosen as the leader. In particular, it is worth stating that themovements of
the leader and the members are completely different mathematically. The leader member is called the
pathfinder. It saves the best solution in each iteration. The other members use Equation (6), whereas
the pathfinder moves towards the next location using Equation (7).

xk+1
i = xki + R1(xkj − xki ) + R2(xkp − xki ) + ε, iε[2,Npop] (6)

xk+1
p = xkp + 2r3(xkp − xk−1

p ) + A (7)

where k is the current iteration, xi is the position vector of member i, xj is the position vector of mem-
ber j, R1 and R2 are random variables which are equal to αr1 and βr2, andNpop is the population size.
Here, r1, r2 and r3 are random variables generated in the range of [0,1] uniformly, xp is the position
vector of the pathfinder, and ε andA are the vibration and fluctuation coefficients, respectively. ε and
A are generated over the course of iterations via Equations (8) and (9), respectively. Also, α and β are
selected randomly in the range of [1,2] in each iteration.

ε =
(
1 − k

kmax

)
u1Dij,Dij = ||xi − xj|| (8)

A = u2e
− 2k

kmax (9)

where u1 and u2 are random variables in the range [−1,1], and Dij is the distance between two
members.
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3.1. Modified pathfinder algorithm (mPFA)

In this study, somemodifications have to bemade. In contrast to the benchmark problems considered
for continuous space, the bounds of some variables in the ORPD problem are constricted. Therefore,
ε andA have beenmodified for an efficient search. Because of thesemodifications, they changewithin
small ranges. Thus, any member can move towards the next position with low vibration around the
promising area. These are modified as follows:

ε = 0.1ε (10)

A = 0.001A (11)

A and ε have key abilities to support the randomwalk as well as making the transition between explo-
ration and exploitation. Thus, A and ε, to maintain the random walk, should have proper values. For
the ORPD problem, themainmodification is to selectA and ε close to zero to provide the exploration
in the initial steps of the iterations and then the exploitation at the end of the process. A suitable value
forA around zero allows the pathfinder tomove towards the next location with small steps.When it is
selected as zero, then the randomwalk does not occur. Therefore,A is multiplied by 0.001. Moreover,
during the many executions, it was observed that when ε � 1, then follower members can change
their location with small steps. However, adjusting ε around 0 may not allow the followers to find the
most promising solution effectively. So, ε is multiplied by 0.1.

In addition, there are different end criteria in the literature, including a fixed number of iterations,
an unchanging string with a certain value, and no change in average fitness value after a few itera-
tions (Yapıcı and Çetinkaya 2017). In this article, the maximum iteration number is used as the stop
criterion. The flowchart of the mPFA is shown in Figure 1. The pseudo-code of the mPFA is given in
Figure S1 in the Supplementary Material.

4. Implementation of themPFA

In this section, the implementation of the mPFA for the ORPD problem is introduced for power
loss minimization. The simulations are also performed on IEEE 57-bus and IEEE 118-bus test sys-
tems. The position of members consists of control variables such as generator voltages, tap settings
and values of shunt compensators, where xi = {VG1,i, . . . ,VGNG,i,T1,i, . . . ,TNT ,i,QC1,i, . . . ,QCNC ,i}T ,
i = 1, . . . ,Npop. The positions of members must be within the lower and upper limits. The lower and
upper bounds are constructed as {VG1,min, . . . ,VGNG,min,T1,min, . . . ,TNT ,min,QC1,min, . . . ,QCNC ,min}T
and {VG1,max, . . . ,VGNG,max,T1,max, . . . ,TNT ,max,QC1,max, . . . ,QCNC ,max}T , respectively. Then, the
variables are compared to the lower and upper bounds after generating new populations. When xi
violates its lower bound, it is fixed to the lower bound. When xi violates its upper bound, it is fixed
to the upper bound. MATPOWER software (Wang et al. 2007; Zimmerman, Murillo-Sánchez, and
Thomas 2010) is used to calculate Newton-based power flow for the ORPD problem. It should be
noted that the ORPD problem is a real-world problem. Although variables are continuous in mathe-
matical optimization problems, some variables can be discrete or integer in real-world problems. To
use these variables, the proposed method explores the search space continuously and then evaluates
the fitness function using an interruption to cut the matching dimensions of members into integers.
In the ORPD problem, the tap position and reactive power source installation are discrete variables
while the generator voltage can be assumed to be a continuous variable. Moreover, inequality con-
straints for the dependent variable are handled as follows: when a variable violates its limits, it is fixed
to its upper or lower limit. The implementation of the algorithm is clarified in Figure 2.

From the explanation given in Figure 2, each position vector is addressed to power flow data, and
the position vectors are then executed in MATPOWER software. All members are updated using ‘if
then’ rules.
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Figure 1. Flowchart of the modified pathfinder algorithm (mPFA).
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Figure 2. Implementation of the modified pathfinder algorithm (mPFA).

5. Results of simulations

The simulations were performed on two IEEE test systems: 57-bus and 118-bus systems. These test
beds are large-scale test systems that are frequently discussed in the literature. In particular, the 118-
bus test system comprises a large number of control variables and thus it is a challenging test bed
for the ORPD problem. To verify and show the performance and ability of the mPFA, the results
are compared with some well-known methods proposed in the literature. The main objective is to
minimize the total power losses. Moreover, parametric analysis and statistical tests such as Kol-
mogorov–Smirnov, Friedman and Wilcoxon tests are performed on 57-bus system. All algorithms
are coded and run in MATLAB

R©
2016 on a personal computer with Intel i5 central processing unit

(CPU) and 4GB RAM. The data in MATPOWER were used.

5.1. Parametric analysis

The mPFA is implemented on the IEEE 57-bus system in four cases. In first, second, third and fourth
cases, the number of search agents is set as 10, 30, 60 and 100, respectively. The convergence curve
is shown in Figure 3. When it is analysed for each case, it can be seen that the proposed algorithm
generates new solutions over the course of iterations. The elapsed times for the first run are 34 s in
the first case, 98 s in the second case, 173 s in the third case and 311 s in the fourth case. The best
results are achieved when the number of search agents is selected as 60 and 100. However, the fourth
case is time expensive, since there are too many function evaluations (equal to 30,000). On the other
hand, the worst results are achieved when the number of search agents is set as 10. When the number
of search agents is set as 60 and 30, power loss is obtained as 24.3692 and 24.4190MW, respectively.
However, it would be more compatible to select the number of search agents as 30.

The deterministic parameter model (Yapici and Cetinkaya 2019), which uses some rules to adjust
the parameters over the course of the process, was used.
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Figure 3. Convergence curves using different numbers of search agents.

5.2. Experimental analysis of the proposedmodification

The PFA has two important adjustable parameters: A and ε. By adjusting the coefficients of these
parameters, the search agents can move in the search space with certain steps. If the coefficients of A
and ε < 1, then the search agents will move to the next position with small steps. If the coefficients
of A and ε > 1, then the search agents will move towards the next position with large steps.

To produce new solutions, the position vectors in the search space need to be changed with small
steps. Therefore, some modifications are required to guarantee the generation of new solutions. In
this regard, some different modifications have been examined experimentally. Among the many pos-
sibilities, the four most effective modifications for comparison are covered in this subsection. These
are as follows:

A = 0.1 × A

A = 0.1 × A, ε = 0.1 × ε

A = 0.1 × A, ε = 0.001 × ε

A = 0.001 × A, ε = 0.001 × ε

All algorithms are tested on the 57-bus and 118-bus test systems. The proposed modification
(mPFA) was compared with the original PFA and the modifications listed above. The results are
given in Table 1. In addition, for 57-bus and 118-bus test systems, the convergence curves are shown
in Figures 4 and 5. It can be observed that the original PFA was not very successful in producing
new solutions. The proposed method achieved less power loss than the original PFA and other mod-
ifications. It was able to generate promising solutions over the course of the iterations. The mPFA
obtained the best solutions as 22.6938 and 114.8970MW for the 57-bus and 118-bus systems, respec-
tively. For the 57-bus system, the mPFA improved the best optimal solution by up to 8.03% compared
with the original PFA. For the 118-bus system, the mPFA improved the best optimal solution by up
to 3.35% compared with the PFA. The CPU times given in Table 1 are almost equal. This means that
the modifications do not change the general mechanism and complexity of the PFA.

5.3. Statistical tests

In this subsection, several statistical tests are performed to assess the compatibility of the results
and rank the mPFA: the Kolmogorov–Smirnov test, Friedman test and Wilcoxon test. The mPFA
is compared with several methods, listed below:

• GWO (Sulaiman et al. 2015)
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Table 1. Performance testing of the modified pathfinder algorithm (mPFA) compared with the pathfinder algorithm (PFA) and other modifications.

Test system Method Minimum Mean Maximum Std. dev. CPU time (s)
Maximum no.
of iterations

Population
size

No. of function
evaluations

IEEE 57-bus test system Original PFA 24.6752 26.7835 27.8539 1.0033 14.895 300 30 9000
First modification 24.2243 25.1276 26.7905 0.7133 14.927 300 30 9000
Second modification 25.5512 26.2545 27.0094 0.3578 14.950 300 30 9000
Third modification 25.8626 26.5386 27.0616 0.3077 14.903 300 30 9000
Fourth modification 23.6653 24.2526 24.9721 0.3429 14.881 300 30 9000
Proposed modification 22.6938 22.9187 23.2427 0.1124 14.895 300 30 9000

IEEE 118-bus test system Original PFA 118.8741 124.1819 130.6500 3.4477 39.255 300 30 9000
First modification 118.4335 122.6752 128.3496 2.2180 39.289 300 30 9000
Second modification 118.7002 121.0619 123.9366 1.5193 39.403 300 30 9000
Third modification 126.8512 128.2656 129.6920 0.6522 39.412 300 30 9000
Fourth modification 118.8011 120.6754 122.1709 0.7930 39.300 300 30 9000
Proposed modification 114.8970 116.1557 117.9215 0.6373 39.318 300 30 9000
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Figure 4. Convergence curves for the 57-bus system. PFA = pathfinder algorithm.

Figure 5. Convergence curves for the 118-bus system. PFA = pathfinder algorithm.

• MFO (Mei et al. 2017)
• teaching–learning-based artificial bee colony (TLABC) (Chen et al. 2018)
• symbiotic organisms search (SOS) (Cheng and Prayogo 2014)
• improved Jaya optimization algorithm (IJAYA) (Yu et al. 2017)
• e-JAYA (Barakat et al. 2019)
• ALO (Li et al. 2019)
• IALO (Li et al. 2019)
• PSO (Mahadevan and Kannan 2010)
• GA (Devaraj and Roselyn 2010).

For a reasonable comparison, the number of agents and number of maximum iterations are set as
30 and 300 for all methods, respectively. All methods are executed by running 30 free trials. (The
parameters of the algorithms are listed in Table S1 in the Supplementary Material.) MFO, IJAYA
and e-JAYA start with random populations owing to their structures. To examine the consistency
of results obtained by the mPFA and to evaluate the distribution characteristics of these values, the
Kolmogorov–Smirnov test is executed. According to this analysis, the e-JAYAmethod exhibited a nor-
mal distributionwith an asymptotic-signum value of 0.000 < 0.005. From the Kolmogorov–Smirnov
test, the proposed method obtained an asymptotic-signum value of 0.935. PSO, GA, GWO, MFO,
TLABC, SOS, IJAYA,ALOand IALOobtained asymptotic-signumvalues of 0.174, 0.071, 0.481, 0.249,
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0.230, 0.414, 0.098, 0.958 and 0.976, respectively. Another test is the Friedman test, which was used
to compare the proposed method with the other methods. This test is a multiple non-parametric
analysis which emphasizes differences in statistical significance for at least one pair of competitor
algorithms. The Friedman test had a chi-squared distribution with 270.690 degrees of freedom, with
an asymptotic-signum value equal to 0.000. All methods were tested cumulatively. It can be observed
that the available variables are meaningfully different from each other. As a result, it can be accepted
that the mPFA achieves the best performance with a mean rank equal to 1.77. e-JAYA and IALO are
ranked as second and third, with mean ranks equal to 1.93 and 3.97, respectively. PSO, GA, GWO,
MFO, TLABC, SOS, IJAYA and ALO achieved mean rank values of 9.63, 12.83, 6.20, 9.10, 9.50, 7.40,
6.30, 4.07 and 3.97, respectively. The third test is theWilcoxon test, which was carried out to compare
the mPFA with other algorithms, separately. As the results of the comparison of mPFA and e-JAYA,
the p values are obtained as 0.069 > 0.05. This means that in terms of their performance, the two
methods are statistically similar. In other words, although the mPFA shows a significant difference
from other algorithms with a value of 0.000 < 0.005, there is no significant difference from e-JAYA.
However, the mPFA achieved a lower value of standard deviation than all other methods. This shows
that it is more consistent than all the other methods.

5.4. Simulation for 57-bus system

The proposed method was compared to several existing methods to evaluate the performance on
the 57-bus test system. The proposed algorithm uses the parameter settings introduced by Li et al.
(2019). The performance of the mPFA was evaluated by adjusting the population size and number of
iterations to 25 and 200, respectively. In the context of testing the mPFA, the numerical analysis was
carried out by running 50 free executions.

For comparison, the results obtained by the proposed method, including performance indices
such as minimum, mean and maximum power losses, standard deviation and CPU time, are given in
Table 2. The results show that the mPFA outperformed many algorithms in solving the ORPD prob-
lem for the 57-bus test system.According to the results listed in Table 2,multi-objectiveGWOshowed
the best performance, with a result of 21.171MW. Also, IALO outperformed the mPFA, with a result
of 22.2539MW.With respect to the results comparedwith othermethods, it can be concluded that the
mPFA has an efficient searching capability since it reduced the total power losses to 22.3450MW. In
the comparison of CPU time, themPFA completed the first execution in 14.9553 s and ranked second.
Consequently, it can be observed that the proposed method obtained competitive results in the anal-
ysis performed on the 57-bus test system. ThemPFA improved the best solutionmore than DE, SOA,
GA, PSO, GSA, ALC-PSO, MFO and ALO, with results of 10.79%, 7.91%, 12.85%, 10.73%, 4.75%,
4.47%, 4.30%, 7.87% and 2.37%, respectively. However, multi-objective GWO and IALO improved
the best solution more than the mPFA, with results of 5.55% and 0.41%, respectively.

The optimal solutions of control variables obtained by the mPFA for the IEEE 57-bus system are
tabulated in Table S2 in the Supplementary Material.

5.5. Simulation for 118-bus system

In this case study, the performance of the mPFA was tested by comparing the reduction of power loss
with various existing methods. The proposed algorithm uses two different parameter settings, with
limitations of the control variables explained below.

• Case 1: mPFA uses the parameters reported by Mei et al. (2017), which are lower bounds, upper
bounds, number of search agents, maximum number of iterations and total number of function
evaluations.
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Table 2. Results for IEEE 57-bus system.

Method Minimum PLoss (MW) Mean PLoss (MW) Maximum PLoss (MW) Std. dev. CPU time (s)
Maximum no.
of iterations

Population
size

No. of function
evaluations

DE (Varadarajan and Swarup 2008) 25.0475 25.1112 25.2016 0.049 35.654 200 30 6000
SOA (Dai et al.2009) 24.26548 24.27078 24.28046 0.0042 – 300 60 18,000
GA (Khazali and Kalantar 2011) 25.64 26.8378 27.7651 – – – – –
PSO (Khazali and Kalantar 2011) 25.03 26.4742 27.0576 – – – – –
GSA (Duman et al.2012) 23.46 – – – 321.4872 150 90 –
ALC-PSO (Singh, Mukherjee, and Ghoshal 2015) 23.39 24.41 – – 300.78 500 60 30,000
MFO (Mei et al.2017) 24.25293 – – – – 300 30 9000
Multi-objective GWO (Li et al.2019) 21.171 – – – – 100 30 6000
ALO (Li et al.2019) 22.8884 23.5584 – – 20.40 200 25 5000
IALO (Li et al.2019) 22.2539 23.54293 – – 14.75 200 25 5000
mPFA 22.3450 22.9116 23.2192 0.1160 14.9553 200 25 5000

Note: DE = differential evolution; SOA = seeker optimization algorithm; GA = genetic algorithm; PSO = particle swarm optimization; GSA = gravitational search algorithm; ALC-PSO = particle
swarm optimization with an ageing leader and challengers; MFO = moth–flame optimizer; GWO = grey wolf optimizer; ALO = ant lion optimizer; IALO = improved ant lion optimizer.
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• Case 2: mPFA uses the parameters reported by Li et al. (2019), which are lower bounds, upper
bounds, number of search agents, maximum number of iterations and total number of function
evaluations.

The results are given in Table 3. In the first case, the results were obtained in 30 free executions,
while the results in the second case were obtained in 50 free executions. For the first and second
cases, the mPFA obtained the power loss as 117.0690 and 114.6092MW, respectively. In addition, it
completed the simulation in the CPU time of 420.852 s for case 1 and 39.308 s for case 2. MFO found
a better optimal solution than mPFA in terms of considering the bounds for control variables and
other parameters. In case 2, the mPFA obtained more effective and competitive results owing to the
changing limits of control variables. However, ISSA and SDP found more effective and better results
than the proposed method. On the other hand, the mPFA outperformed the other methods in the
context of minimizing power losses.

CPU time is given as another performance criterion. SDP has a lower CPU time than all the other
methods. On the other hand, the proposed method completed the optimization process in less time
than many of the other algorithms. This proves that the proposed method is less complex.

Also, themPFA improved the best solutionmore thanDE, CLPSO, PSO, PSO-TVIW, PSO-TVAC,
SPSO-TVAC, PSO-CF, PGS-PSO, SWT-PSO, PGSWT-PSO, PSO-IPGS, SOA,GWO,ALC-PSO,GSA,
MFO, ALO, IALO, MSFS and case 1, with results of 10.68%, 12.49%, 13.17%, 1.96%, 7.82%, 1.37%,
0.90%, 1.71%, 7.68%, 4.03%, 0.39%, 0.30%, 5.01%, 5.69%, 10.29%, 1.56%, 1.93%, 0.16%, 0.01% and
2.10%, respectively. (These algorithm abbreviations are defined in the footnote to Table 3.) However,
SDP and ISSA improved the best optimal solutionmore thanmPFA, with results of 1.27% and 0.07%,
respectively.

The results of control variables obtained by the mPFA for the two different cases are given in Table
S3 in the Supplementary Material.

6. Discussion

From the results of the case studies, an advantage of themPFA is that the successful transition between
the exploration and exploitation phases enabled new solutions to be produced over the course of iter-
ations, thus obtaining better results than many methods in solving the ORPD problem. In contrast, a
disadvantage of the mPFA is that it produces solutions with minor changes towards the end of pro-
cess, and thus, it cannot produce more influential solutions. The number of iterations becomes an
important problem owing to the convergence ofA and ε towards 0, and even finding promising solu-
tions becomes difficult. Therefore, it is important to keep the number of iterations at a certain value.
However, this may be time consuming. Accordingly, the number of iterations should be chosen in a
small range.While this reduces the processing time,A and ε cannot be updated sufficiently. This may
cause a deficiency in the iterative process. After many executions in all case studies, it was observed
that the irregular movements of followers cause them to move away from promising solutions. But
thanks to the leader individual using a completely different mathematical model, it was possible to
obtain new solutions at the end of the process.

As a result, it was proved that the mPFA is a robust optimization algorithm, which has a superior
ability to solve the ORPD problem while achieving effective and competitive results. Moreover, all
control variables are within their limits.

7. Conclusion

In this article, a modified version of the pathfinder algorithm (mPFA) was implemented to solve the
ORPD problem. The numerical analyses were performed on IEEE 57-bus and 118-bus test systems to
minimize power losses. The mPFA achieved relatively competitive results in comparison with other
well-known approaches. From the results obtained, the mPFA proved to be more effective and robust
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Table 3. Results for IEEE 118-bus system.

Method Minimum PLoss (MW) Mean PLoss (MW) Maximum PLoss (MW) Std. dev. CPU time (s)
Maximum no.
of iterations

Population
size

No. of function
evaluations

DE (Varadarajan and Swarup 2008) 128.318 129.0817 129.5790 0.345 42.1556 – 30 –
CLPSO (Mahadevan and Kannan 2010) 130.96 – 132.74 – – 200 120 –
PSO (Mahadevan and Kannan 2010) 131.99 – 134.5 – – 200 120 –
PSO-TVIW (Polprasert, Ongsakul, and
Dieu 2016)

116.8979 118.2344 126.6222 1.6009 109.645 200 40 8000

PSO-TVAC (Polprasert, Ongsakul, and
Dieu 2016)

124.3335 129.7494 134.1254 2.156 96.32 200 40 8000

SPSO-TVAC (Polprasert, Ongsakul, and
Dieu 2016)

116.2026 117.3553 118.139 0.4696 96.45 200 40 8000

PSO-CF (Polprasert, Ongsakul, and
Dieu 2016)

115.6469 116.9863 119.8378 0.8655 95.86 200 40 8000

PGS-PSO (Polprasert, Ongsakul, and
Dieu 2016)

116.6075 119.3968 127.0772 2.107 96.11 200 40 8000

SWT-PSO (Polprasert, Ongsakul, and
Dieu 2016)

124.1476 129.371 141.6147 3.309 91.58 200 40 8000

PGSWT-PSO (Polprasert, Ongsakul, and
Dieu 2016)

119.427 122.781 125.762 1.2455 95.17 200 40 8000

PSO-IPGS (Polprasert, Ongsakul, and
Dieu 2016)

115.06 116.462 118.35 0.528 91.07 200 40 8000

SOA (Dai et al.2009) 114.95013 116.34725 115.67443 0.0035908 – 300 60 18,000
GWO (Sulaiman et al.2015) 120.65 – – – – 150 40 6000
ALC-PSO (Singh, Mukherjee, and
Ghoshal 2015)

121.53 – 132.99 – 34.84 – 60 500

GSA (Duman et al.2012) 127.76 – – – 39.95 150 90 –
MFO (Mei et al.2017) 116.4254 – – – – 1000 30 30,000
ISSA (Nguyen and Vo 2019) 114.5297 115.651 121.1127 1.4889 41.6 150 40 7190
ALO (Li et al.2019) 116.86 119.712 – – 50.71 250 30 7500
IALO (Li et al.2019) 114.795 117.299 – – 39.59 250 30 7500
MSFS (Nguyen et al.2019) 114.6251 115.4278 116.6677 0.4678 63.7 200 15 9000
SDP (Davoodi et al.2019) 113.17 – – – 6.07 – – –
mPFACase1 117.0690 117.3823 118.0053 0.2969 420.852 1000 30 30,000
mPFACase2 114.6092 116.1976 116.9854 0.6910 39.308 250 30 7500

Note: DE = differential evolution; CLPSO = comprehensive learning particle swarm optimization; PSO = particle swarm optimization; PSO-TVIW = particle swarm optimization with time-varying
inertia weight; PSO-TVAC = particle swarm optimizationwith time-varying acceleration coefficients; SPSO-TVAC = self-organizing hierarchical particle swarm optimizationwith time-varying accel-
eration coefficients; PSO-CF = particle swarm optimization with constriction factor; PGS-PSO = pseudo-gradient search particle swarm optimization; SWT-PSO = particle swarm optimization
with stochastic weight trade-off; PGSWT-PSO = pseudo-gradient particle swarm optimization with stochastic weight trade-off; PSO-IPGS = improved pseudo-gradient search particle swarm
optimization; SOA = seeker optimization algorithm; GWO = grey wolf optimizer; ALC-PSO = particle swarm optimization with an ageing leader and challengers; GSA = gravitational search
algorithm; MFO = moth–flame optimizer; ISSA = improved social spider algorithm; ALO = ant lion optimizer; IALO = improved ant lion optimizer; MSFS = modified stochastic search algorithm;
SDP = semi-definite programming.
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than the original PFA. In addition, for the 57-bus system, the mPFA improved the objective corre-
sponding to the reduction of power losses by 8.03%more than the original PFA. Also, for the 118-bus
system, the improvement of the mPFA over the original version was about 3.35%. According to the
results of comparisons with existing methods, the mPFA proved its capability and superiority since
it outperformed many methods by obtaining optimal solutions with better quality. For the 57-bus
system and 118-bus system, the mPFA achieved the improvement level from 2.37% to 12.85% and
from 0.01% to 13.17%, respectively, in minimizing power losses. In addition, the proposed method
reached the end of the process in less time than many of the other algorithms. As a result, it can be
seen that the proposed method obtained the control variables within acceptable values by effectively
addressing the equality and inequality constraints.

The statistical tests also showed that the results obtained by themPFA are consistent. According to
the Kolmogorov test, to emphasize the consistency, the mPFA ranked as second, with a result equal to
0.935. This showed that the PFA was more consistent thanmany other methods. The mPFA obtained
better performance than all other methods, with a mean rank equal to 1.77 in the Friedman test.
Finally, according to the Wilcoxon test, although the mPFA was statistically similar to e-JAYA, it dif-
fered significantly from the other methods, with a p-value of 0.000. Furthermore, the mPFA obtained
the best standard deviation. This means that it is more consistent than the other methods.

The mPFA could be used for other power system problems such as economic power dispatch,
system reconfiguration and optimal design problems. To improve the performance of the proposed
method, other approaches could be used for hybridization using their superior features. In future
work, the mPFA will be used to find optimal weights of artificial neural networks in order to control
a battery management system for standalone photovoltaic units.
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