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Since its appearing in 1996, the Stockwell transform (S-transform) has been applied 
to medical imaging, geophysics and signal processing in general. In this paper, we 
prove that the system of functions (so-called DOST basis) is indeed an orthonormal 
basis of L2 ([0, 1]), which is time–frequency localized, in the sense of Donoho–Stark 
Theorem (1989) [11]. Our approach provides a unified setting in which to study 
the Stockwell transform (associated with different admissible windows) and its 
orthogonal decomposition. Finally, we introduce a fast – O (N logN) – algorithm to 
compute the Stockwell coefficients for an admissible window. Our algorithm extends 
the one proposed by Y. Wang and J. Orchard (2009) [33].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let f be a signal with finite energy, that is f ∈ L2 (R), and let ϕ be a window in L2 (R). Then, following 
M.W. Wong and H. Zhu [34], we define the Stockwell transform (S-transform) Sϕ f as

(Sϕ f) (b, ξ) = (2π)−1/2
∫
R

e−2πi tξ f (t) |ξ|ϕ (ξ (t− b)) dt, b, ξ ∈ R. (1.1)

It is possible to rewrite the S-transform with respect to the Fourier transform of the analyzed signal:

(Sϕ f) (b, ξ) =
∫
R

e2πi bζ f̂ (ζ + ξ) ϕ̂
(
ζ

ξ

)
dζ, b, ξ ∈ R, ξ �= 0, (1.2)
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where f̂ is the Fourier transform of the signal f , given by

f̂ (ξ) = (F f) (ξ) = (2π)−1/2
∫
R

e−2πi tξ f(t)dt, ξ ∈ R.

We fix the notation: we denote with qf or F−1 f the inverse Fourier transform of a signal f . N = {0, 1, . . .}
is the set of non-negative integers, Z = {. . . ,−1, 0, 1, . . . , } is the set of integers.

The S-transform was initially defined by R.G. Stockwell, L. Mansinha and R.P. Lowe in [29] using a 
Gaussian window

g (t) = e−t2/2, t ∈ R.

In this case,

(Sg f) (b, ξ) = (2π)−1/2
∫
R

e−2πi tξ f (t) |ξ| e−(t−b)2ξ2/2 dt, b, ξ ∈ R, (1.3)

which, in the alternative formulation, becomes

(Sg f) (b, ξ) =
∫
R

e2πi ζb f̂ (ζ + ξ) e−2π2ζ2/ξ2
dζ, b, ξ ∈ R, ξ �= 0. (1.4)

The natural discretization of (1.4), introduced in [29], is given by

(Sg f) (j, n) =
N−1∑
m=0

e2πi mj/N f̂ (m + n) e−2π2m2/n2
, (1.5)

where j = 0, . . . , N − 1 and n = 1, . . . , N − 1. For n = 0, it is set

(Sg f) (j, 0) = 1
N

N−1∑
k=0

f(k), j = 0, . . . , N − 1.

In the literature, (1.5) is called redundant (discrete) Stockwell transform. Unfortunately, the redundant 
Stockwell transform has a high computational cost: O

(
N2 logN

)
. To overcome this problem, R.G. Stockwell 

introduced in [27], without a mathematical proof, a basis for periodic signals with finite energy, i.e. L2 ([0, 1]), 
given by

⋃
p∈Z

Dp =
⋃
p∈Z

{Dp,τ}β(p)−1
τ=0 . (1.6)

This basis, precisely defined in Section 3, is adapted to octave samples in the frequency domain. The 
decomposition of a periodic signal f in this basis is called in the literature the discrete orthonormal Stockwell 
transform (DOST). The related coefficients

fp,τ = (f,Dp,τ )L2([0,1]) ,

are called DOST coefficients.
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In this paper we prove that this basis is not suited to the standard S-transform with Gaussian window 
(1.1), rather to an S-transform associated with a characteristic function (boxcar window). This fact was 
already pointed out by R.G. Stockwell himself in [27] and [28]. The computational complexity of the algo-
rithm suggested by R.G. Stockwell was still high: O(N2). In 2009, Y. Wang and J. Orchard [33] proposed 
a fast algorithm which reduces drastically the complexity to O(N logN); the same complexity of the FFT. 
This achievement allowed a wider application of the S-transform to image analysis.

We provide an adapted basis of L2 ([0, 1]) on which to decompose the Stockwell transform with a general 
admissible window ϕ. Assume that we can find such a basis Eϕ

p of L2 ([0, 1]), depending on the choice of ϕ. 
Then, by linearity, we can write

(Sϕ f) (b, ξ) =
∑
p

cϕp
(
Sϕ Eϕ

p

)
(b, ξ) (1.7)

where

f =
∑
j

cϕpE
ϕ
p .

An ideal basis would satisfy the following properties:

(i) Eϕ
p is an orthonormal basis of L2 ([0, 1]), so that

cϕp =
(
f,Eϕ

p

)
L2([0,1]) ;

(ii)
(
Sϕ Eϕ

p

)
(b, ξ) is local in time;

(iii)
(
Sϕ Eϕ

p

)
(b, ξ) is local in frequency;

(iv) we can find a fast algorithm (O (N logN)) to compute the coefficients(
f,Eϕ

p

)
L2([0,1]) .

We prove that (1.6) is indeed an orthonormal basis of L2 ([0, 1]) satisfying conditions (i), (ii), (iii) and (iv)
if ϕ = qχ = F−1 χ(− 1

3 ,
1
3
). In particular, we prove that2

E qχ
p,τ = Dp,τ .

Moreover, in Proposition 11 we clarify the connection between the Stockwell coefficients and the value of 
the S-transform with window qχ.

Let ϕ be an admissible window, we introduce the basis

Eϕ
p,τ , (1.8)

such that3 (
Sϕ Eϕ

p,τ

)
(b, ν (p)) = Dp,τ (b) , (1.9)

where ν (p) is the center of the p-frequency band where the basis Dp,τ in (1.6) is supported. In Section 6, 
we introduce a fast (O (N logN)) algorithm to compute the coefficients

2 See Remark 3 for the precise statement.
3 Equality (1.9) must be interpreted with care, we refer to Section 6 for the precise statement.
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(
f,Eϕ

p,τ

)
L2([0,1]) .

Unfortunately, for a general admissible window ϕ, the basis (1.8) fails to be orthogonal. Nevertheless, under 
a mild condition on ϕ, we prove that it forms a frame, which in general is not tight. So, by abstract theory 
of frames, we obtain that the coefficients in (1.7) are(

f, Ẽϕ
p,τ

)
L2([0,1])

,

where Ẽϕ
p,τ is the dual frame of Eϕ

p,τ .
This paper is organized as follows: in Section 2, we provide a brief survey on the S-transform in the 

context of time–frequency analysis. In particular, we point out the similarities and the differences between 
Fourier transform, short-time Fourier transform and wavelet transform. In Section 3, we prove that (1.6) is 
a basis of L2 ([0, 1]) and we highlight its time–frequency local properties. In Section 4, we decompose the 
Stockwell transform with a general window using (1.6). Moreover, we determine the explicit expression of 
(Sϕ Dp,τ ). In Section 5, we provide a discretization of the S-transform. In Section 6, we determine the basis 
(1.8) adapted to a general admissible window ϕ. We propose an algorithm which evaluates the coefficients 
related to the basis (1.8) of computational complexity O(N logN). This algorithm extends the one proposed 
by Y. Wang and J. Orchard in [33].

2. A brief survey on the S-transform

In many practical applications it is important to analyze signals, i.e. extracting the time–frequency 
content of a signal. Given a signal f in L2 (R), we can precisely extract its frequency content using the 
Fourier transform F

f̂ (ξ) = (F f) (ξ) = (2π)−1/2
∫
R

e−2πi tξ f(t) dt, ξ ∈ R.

Unfortunately, due to uncertainty principle, it is impossible to retain at the same time precise time–frequency 
information. In the past years, many techniques arose trying to deal with the uncertainty principle in order 
to obtain a sufficiently good time–frequency representation of a signal. The short-time Fourier transform

(STFTϕ f) (b, ξ) = (2π)−1/2
∫
R

e−2πi tξ f (t)ϕ (t− b) dt, b, ξ ∈ R

is one of the standard tools. Loosely speaking, taking the short-time Fourier transform of a signal f at a 
certain time b is like taking the Fourier transform of the signal f cut by a window function ϕ centered in b, 
see for example [13,17]. It is possible to invert the short-time Fourier transform using the following theorem.

Theorem 1. Let f be a signal in L2 (R) and ϕ a window in L2 (R). Then

f̂ (ξ) =
∫
R

(STFTϕ f) (b, ξ) db, ξ ∈ R.

Notice that the width of the analyzing window remains fixed. Due to the Nyquist sampling theorem, it 
would be natural to consider a window whose width depends on the analyzed frequency. To accomplish this 
task, in [29], the S-transform Sg was introduced as
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(Sg f) (b, ξ) = (2π)−1/2 |ξ|
∫
R

e−2πi tξ f (t) e−(t−b)2ξ2/2 dt, b, ξ ∈ R. (2.1)

Notice that the width of the Gaussian window e−(t−b)2ξ2/2 shrinks as the analyzed frequency increases, 
providing a better time-localization for high frequencies. It is possible to rewrite the Stockwell transform 
with respect to the Fourier transform of the signal f as

(Sg f) (b, ξ) =
∫
R

e2πi ζb f̂ (ζ + ξ) e−
2π2ζ2

ξ2 dζ, b, ξ ∈ R, ξ �= 0. (2.2)

In [29] it has been stated an inversion formula similar to Theorem 1.

Theorem 2. Let f be a signal in L2 (R). Then

f̂ (ξ) =
∫
R

(Sg f) (b, ξ) db, ξ ∈ R.

Many extensions of this transform have been suggested in the last years. See for example [10,18,19,34,35]. 
We here recall the one introduced in [34].

Definition 1. Let f be a signal in L2 (R) and let ϕ be a window function in L2 (R). Then, we call

(Sϕ f) (b, ξ) = (2π)−1/2
∫
R

e−2πi tξ f (t) |ξ|ϕ (ξ (t− b)) dt, b, ξ ∈ R (2.3)

the Sϕ-transform of the signal f with respect to the window ϕ.

It is possible to recover the original definition (2.1) taking ϕ to be the Gaussian window ϕ (t) = e−t2/2. The 
S-transform has been recently extended to the multi-dimensional case by the second author [26]. Theorem 2
still holds for the S-transform (2.3).

See [4,7,12,16,20,22,24,36] for some applications of the S-transform to signal processing.
Heuristically, we can think at the S-transform as a short-time Fourier transform in which the width of 

the analyzing window varies with respect to the analyzed frequency. Therefore, the S-transform can also be 
interpreted as a particular non-stationary Gabor transform, see [1].

We can give an equivalent definition of the S-transform using the following proposition.

Proposition 3. Let f be a signal in L2 (R) and let ϕ be a window in L2 (R). Then

(Sϕ f) (b, ξ) = e−2πi bξ
(
F−1
ζ �→b fξ

)
(b) , b, ξ ∈ R, ξ �= 0,

where

fξ (ζ) = f̂ (ζ) ϕ̂

(
ζ − ξ

ξ

)
, ζ ∈ R, ξ �= 0.

The following inversion formula has been proven in [34].

Theorem 4. Let ϕ be a function in L1 (R) ∩ L2 (R) such that
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cϕ =
∫
R

|ϕ̂ (ξ)|2 dξ

|ξ + 1| < ∞.

We say that ϕ is an admissible window for the S-transform and we call cϕ the admissibility constant. Then

cϕ (f, f ′)L2(R) =
∫
R

∫
R

(Sϕ f) (b, ξ) (Sϕ f ′) (b, ξ) dbdξ|ξ| ,

for all f and f ′ in L2 (R).

Notice that Theorem 2 and Theorem 4 still hold in the multi-dimensional case (see [25,26]).
At this point, it is useful to recall the wavelet transform Wϕ f of a signal f in L2 (R) with respect to the 

window ϕ

(Wϕ f) (b, a) =
∫
R

f (t) |a|−1/2
ϕ (a−1 (t− b)) dt, ∀b, a ∈ R.

See for example [3,9,23] for details on wavelet analysis and filter banks.

Theorem 5. Let ϕ be a window in L2 (R) such that

cϕ =
∫
R

|ϕ̂ (ξ)|2 dξ

|ξ| < ∞.

We say that ϕ is an admissible wavelet and we call cϕ the admissibility constant. Then

cϕ (f, f ′)L2(R) =
∫
R

∫
R

(Wϕ f) (b, a) (Wϕ f ′) (b, a) dbda
a2 ,

for all f and f ′ in L2 (R).

Notice the similarities between Theorem 4 and Theorem 5. This follows from a deep connection among 
Stockwell transform, short-time Fourier transform and wavelet transform. In fact, these transforms are 
related to the affine Weyl–Heisenberg group studied in [21]. This connection has been highlighted in the 
multi-dimensional case by the second author in [25]. In [15,30], the connections between Stockwell transform 
and wavelet transform are pointed out. The affine Weyl–Heisenberg group is also connected to the definition 
of α-modulation spaces, see [2,8,14], which represents, at the level of coorbit theory, a sort of interpolation 
between Modulation spaces and Besov spaces. A different group approach to the Stockwell transform has 
been studied in [6].

3. A time–frequency localized basis

In this section, we prove that the system of functions (1.6), proposed by R.G. Stockwell in [27], is indeed 
an orthonormal basis of L2 ([0, 1]).

For p = 0, we define

ν(0) = 0, β(0) = 1, τ(0) = 0,

for p = 1



JID:YACHA AID:1023 /FLA [m3L; v1.149; Prn:12/03/2015; 12:42] P.7 (1-29)
U. Battisti, L. Riba / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 7
ν(1) = 1, β(1) = 1, τ(1) = 0,

for all p ≥ 2

ν(p) = 2p−1 + 2p−2, β(p) = 2p−1, τ(p) = 0, . . . , β(p) − 1.

Setting, for each p, the p-frequency band

[β(p), 2β(p) − 1] =
[
ν(p) − β(p)

2 , ν(p) + β(p)
2 − 1

]
,

we obtain a partition of N; notice that ν(p) is the center of each p-frequency band. We recall here the 
definition of the so-called DOST functions, introduced in [27]:

D0 (t) = 1, t ∈ R,

D1 (t) = e2πi t, t ∈ R,

and

Dp = {Dp,τ (t)}τ=0,...,β(p)−1 , t ∈ R,

where

Dp,τ (t) = 1√
β(p)

ν(p)+β(p)/2−1∑
f=ν(p)−β(p)/2

e2πi fte−2πi fτ/β(p), t ∈ R.

For all negative integers p, we set

Dp,τ (t) = D−p,τ (t), τ = 0, . . . , β (|p|) − 1.

For each p ∈ N, ν(−p) = −ν(p) and β(−p) = β(p). In the sequel we call⋃
p∈Z

Dp (3.1)

Stockwell basis.
Notice that, in the original paper [27], each Dp,τ had a multiplicative factor eτπi. Since this factor is 

not crucial in proving that (3.1) is a basis of L2 ([0, 1]), we have decided to drop it. In (5.17), we clarify 
the role of this multiplicative factor. In Fig. 1 and Fig. 2 we draw the DOST basis functions without this 
multiplicative factor. In Fig. 2 notice that, with our choice, these functions are self-similar in each p-band, 
in contrast to the ones defined in [27]. Moreover, we have slightly changed the notation in the frequency 
domain. The kth element of the Fourier basis is e2πi kt, while, in the original paper, the kth element is 
e−2πi kt. The convention we adopt seems closer to the standard Fourier analysis.

Theorem 6. 
⋃

p∈Z
Dp is an orthonormal basis of L2 ([0, 1]).

Proof. In the sequel, we consider positive p. For negative p, all results hold true using the adjoint property. 
We recall that {e2πi kt}k∈Z is an orthonormal basis of L2 ([0, 1]) and we notice that Dp,τ (t) is a finite linear 
combination of e2πi kt with k in the p-frequency band
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Fig. 1. DOST basis functions in increasing frequency p-bands. Black line = real, red line = imaginary. See Fig. 2 in [27] for a 
comparison.

Fig. 2. DOST basis functions in the same p-band (p = 5). Black line = real, red line = imaginary. See Fig. 1 in [27] for a comparison.
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Ip =
[
ν(p) − β(p)

2 , ν(p) + β(p)
2 − 1

]
.

Hence, we can conclude that

(Dp,τ , Dp′,τ ′)L2([0,1]) = 0, if p �= p′, ∀τ, τ ′,

since the p-band and the p′-band are disjoint. So, we can focus on the case p = p′. The proof is divided into 
three steps.

Step I – ‖Dp,τ‖L2([0,1]) = 1.

Consider the inner product

‖Dp,τ‖2
L2([0,1]) = (Dp,τ , Dp,τ )L2([0,1])

= 1
β(p)

1∫
0

⎛⎝ν(p)+β(p)/2−1∑
f=ν(p)−β(p)/2

e2πi fte−2πi fτ/β(p)

⎞⎠⎛⎝ ν(p)+β(p)/2−1∑
f ′=ν(p)−β(p)/2

e−2πi f ′te2πi f ′τ/β(p)

⎞⎠ dt.

Since {e2πi kt}k∈Z is an orthonormal basis,

‖Dp,τ‖2
L2([0,1]) = 1

β(p)

f=ν(p)+β(p)/2−1∑
f=ν(p)−β(p)/2

1∫
0

1 dt = 1.

Step II –
⋃

p∈Z
Dp is an orthonormal set.

If p �= p′ the L2-scalar product vanishes, so we can suppose p = p′. It is convenient to consider j = f−β(p).

Dp,τ (t) = 1√
β(p)

β(p)−1∑
j=0

e2πi (β(p)+j)te−2πi (β(p)+j)τ/β(b)

= 1√
β(p)

β(p)−1∑
j=0

e2πi (β(p)+j)te−2πi τj/β(p). (3.2)

The orthonormality of the Fourier basis implies

(Dp,τ , Dp,τ ′)L2([0,1]) = 1
β(p)

β(p)−1∑
j=0

e2πi (τ ′−τ)j/β(p). (3.3)

Now, we need the following lemma.

Lemma 1. Let k ∈ N \ {0}. Then

2k−1∑
j=0

e2πi jm/2k

= 0, m = ±1, . . . ,±(2k − 1). (3.4)

Proof. Notice that (3.4) is a truncated geometric series with ratio e2πi m/2k . Therefore, the well known 
formula for geometric progression implies that
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2k−1∑
j=0

e2πi jm/2k

= 1 − e2πi m2k/2k

1 − e2πi m/2k = 0.

Since m = ±1, . . . , ±(2k − 1), the denominator in the above equation never vanishes. �
Let (τ ′ − τ) = m in (3.4), then Lemma 1 implies that

(Dp,τ , Dp′,τ ′)L2([0,1]) = δ0(p− p′)δ0(τ − τ ′),

i.e.
⋃

p∈Z
Dp is an orthonormal set.

Step III –
⋃

p∈Z
Dp is a basis of L2 ([0, 1]).

Notice that

Dp ⊆ span{e2πi kt}k∈[β(p),2β(p)−1].

Hence, to prove the assertion it is sufficient to show that the elements of the set {Dp,τ}τ=0,...,β(p)−1 are a 

basis of span{e2πi kt}k∈[β(p),2β(p)−1]. Since we deal with finite dimensional vector spaces, we prove that the 

functions {Dp,τ}β(p)−1
τ=0 are linearly independent; that is

β(p)−1∑
τ=0

cτDp,τ = 0 =⇒ cτ = 0, ∀τ = 0, . . . , β(p) − 1. (3.5)

Since {e2πi (β(p)+j)t}j=0,...,β(p)−1 is a basis, we can consider the projection of (3.5) on each term 
{e2πi (β(p)+j)t}j=0,...,β(p)−1 of the Fourier basis. We obtain the system

β(p)−1∑
τ=0

cτe
−2πi τj/β(p) = 0, j = 0, . . . , β(p) − 1. (3.6)

Notice that (3.6) can be written as the linear system⎛⎜⎜⎜⎜⎜⎜⎝
1 1 . . . 1
1 e−2πi /β(p) . . . e−2πi (β(p)−1)/β(p)

1 e−2πi 2/β(p) . . . e−2πi 2(β(p)−1)/β(p)

...
...

. . .
...

1 e−2πi (β(p)−1)/β(p) . . . e−2πi (β(p)−1)2/β(p)

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
c0
c1
c2
...

cβ(p)−1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎠ (3.7)

The square matrix in (3.7) is a Vandermonde matrix with entries 
{
e−2πi l/β(p)}β(p)−1

l=0 . Since the entries are 
all distinct the determinant of the Vandermonde matrix is non-zero and the unique solution of the linear 
system (3.7) is the zero vector. That is the functions {Dp,τ}β(p)−1

τ=0 are linear independent. �
Lemma 1 implies the following corollary.

Corollary 1. For each p ∈ Z and each τ, τ ′ = 0, . . . , β(|p|) − 1 we have

Dp,τ

(
τ ′

β(p)

)
=
√

β(p)δ0(τ ′ − τ).
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Proof. Let us suppose p positive. Then

Dp,τ

(
τ ′

β(p)

)
= 1√

β(p)

β(p)−1∑
j=0

e
2πi (β(p)+j)

(
τ′−τ
β(p)

)

= 1√
β(p)

β(p)−1∑
j=0

e2πi j(τ ′−τ)/β(p).

Letting (τ ′ − τ) = m, we apply Lemma 1 and we obtain the assertion. For negative p we use the adjoint 
property. �

The DOST functions are not dilations nor translations of a single function. Nevertheless, for each p,

Dp (t) =

⎧⎨⎩ 1√
β(p)

β(p)−1∑
j=0

e2πi (β(p)+j)(t−τ/β(p))

⎫⎬⎭
τ=0,...,β(p)−1

is formed by translations of τ/β(p) of the same function. Roughly speaking, we can state that the DOST 
basis is not self similar globally, but it is self similar in each band, see Fig. 2. Hence, the S-transform in this 
setting appears different from the wavelet transform because the mother wavelet changes as the frequencies 
increases, in contrast to the usual formulation.

R.G. Stockwell proposed this basis because it is an efficient compromise between frequency localization 
in low frequencies and time localization for high frequencies. The price to pay is that, on one hand, for high 
frequencies, we do not have a precise frequency localization, but just a localization in a certain band, which 
is wider as the frequency increases and, on the other hand, in low frequencies, we lose time localization. In 
fact, for high frequencies, the basis Dp,τ are, in large sense, local at t = τ/β(p). It is not true that Dp,τ

has compact support in time, but the energy is concentrated near the point t = τ/β(p). We prove that the 
basis functions Dp,τ are 0.85-concentrated in the neighborhood

Ip,τ =
[

τ

β(p) − 1
2β(p) ,

τ

β(p) + 1
2β(p)

]
,

in the sense of the Donoho–Stark Theorem [11,5].

Proposition 7. For each Dp,τ (t) we have

‖Dp,τ‖L2(Ip,τ ) =

⎛⎜⎜⎝
2τ+1
2β(p)∫

2τ−1
2β(p)

|Dp,τ |2dt

⎞⎟⎟⎠
1/2

> 0, 85,

i.e. the L2-norm is concentrated in the interval

Ip,τ =
[

τ

β(p) − 1
2β(p) ,

τ

β(p) + 1
2β(p)

]
.

Since ‖Dp,τ‖ = 1, we can also state that the L2-norm of Dp,τ is less that 0, 15 out of Ip,τ . For τ = 0, Ip,0
must be considered as an interval in circle, that is

Ip,0 =
[
0, 1

2β(p)

)
∪
(

1 − 1
2β(p) , 1

]
.
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Proof. Since in each p-band the basis functions are a translation of τ/β(p) of the same function, we can 
prove the property for a fixed τ . For simplicity, we consider τ = 0. In order to take in account just one 
integral, we extend by periodicity the function for negative t and we evaluate

1
2β(p)∫

− 1
2β(p)

|Dp,τ (t)|2 dt. (3.8)

Notice that

|Dp,0|2 = Dp,0(t) ·Dp,0(t)

= 1
β(p)

⎛⎝β(p)−1∑
j=0

e2πi (β(p)+j)t

⎞⎠ ·

⎛⎝β(p)−1∑
k=0

e−2πi (β(p)+k)t

⎞⎠
= 1

β(p)

β(p)−1∑
m=−β(p)+1

(β(p) − |m|)e2πi mt. (3.9)

Equation (3.9) can be proven by induction on the size of the band. Writing (3.9) in terms of cosine and sine 
we obtain

|Dp,0|2 = 1
β(p)

β(p)−1∑
m=−β(p)+1

(β(p) − |m|)(cos(2πmt) + i sin(2πmt))

= 1 + 1
β(p)

β(p)−1∑
m=1

(β(p) −m) ((cos(2πmt) + cos(−2πmt)) + i (sin(2πmt) + sin(−2πmt)))

= 1 + 2
β(p)

β(p)−1∑
m=1

(β(p) −m) cos (2πmt) .

Therefore,

1
2β(p)∫

− 1
2β(p)

|Dp,0 (t)|2 dt =

1
2β(p)∫

− 1
2β(p)

dt + 2
β(p)

1
2β(p)∫

− 1
2β(p)

β(p)−1∑
m=1

(β(p) −m) cos(2πmt) dt

= 1
β(p) + 2

β(p)

β(p)−1∑
m=1

(β(p) −m) sin(2πmt)
2πm

∣∣∣∣ 1
2β(p)

− 1
2β(p)

= 1
β(p) + 4

β(p)

β(p)−1∑
m=1

(β(p) −m)
sin
(

2πm
2β(p)

)
2πm

.

By the Maclaurin expansion of sin(x),

1
2β(p)∫

− 1

|Dp,0|2 dt = 1
β(p) + 4

β(p)

β(p)−1∑
m=1

(β(p) −m)
(

2πm 1
2β(p) + Rm(η)

2πm

)
,

2β(p)
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where Rm(η) is the Lagrange rest. Using Gauss summation formula we obtain

1
2β(p)∫

− 1
2β(p)

|Dp,0 (t)|2 dt ∼= 1
β(p) + 2

β2(p)

β(p)−1∑
m=1

(β(p) −m)

= 1
β(p) + 2

β2(p)

(
β(p)(β(p) − 1) − 1

2β(p)(β(p) − 1)
)

= 1
β(p) + 1

β(p) (β(p) − 1) = 1.

We have to take in account the rests Rm(η). Since

sup
∣∣∣∣ d3

dt3
[sin(2πmt)]

∣∣∣∣ = (2πm)3,

we can conclude that∣∣∣∣∣∣ 4
β(p)

β(p)−1∑
m=1

(β(p) −m)Rm(η)
2πm

∣∣∣∣∣∣
≤ 4

β(p)

β(p)−1∑
m=1

(β(p) −m)
2πm

(2πm)3

6(2β(p))3

≤ π2

3β4(p)

β(p)−1∑
m=1

(β(p) −m)m2

≤ π2

3β4(p)

(
β(p)2

6 (β(p) − 1)(2β(p) − 1) − β(p)2

4 (β(p) − 1)2
)

≤ π2(β(p) − 1)
3β2(p)

(
β(p)

3 − 1
6 − β(p)

4 + 1
4

)

≤ π2

36
β(p)2 − 1
β(p)2

≤ π2

36 < 0, 275.

Hence, finally

⎛⎜⎝
1

2β(p)∫
− 1

2β(p)

|Dp,0 (t)|2 dt

⎞⎟⎠
1/2

≥ (1 − 0, 275)1/2 ≥
√

0, 725 > 0, 85. �

4. Diagonalization of the S-transform

In this section, for the sake of clarity, we write Sϕ-transform instead of S-transform to emphasize the 
window dependence. We focus our attention to L2 ([0, 1]). Using Fourier series, it is well known that if 
f ∈ L2 ([0, 1]), then
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f(t) =
∑
k∈Z

f̂(k)e2πi kt, a.e.,

and

‖f‖L2([0,1]) =
(∑

k∈Z

|f̂(k)|2
) 1

2

.

We define the Hilbert space (Y, ( , )Y , ‖ ‖Y ):

Y =
{∑

k∈Z

ck(ξ)e2πi (k−ξ)b
∣∣∣ ck(ξ) ∈ L2

(
R,

1
|ξ|

)
, and

∑
k∈Z

‖ck‖2
L2
(
R, 1

|ξ|

) < ∞
}
,

(g, g′)Y =
1∫

0

∫
R

g(b, ξ)g′(b, ξ)dξ|ξ|db, g, g′ ∈ Y,

‖g‖Y =
√

(g, g)Y =
(∑

k∈Z

‖gk‖2
L2
(
R, 1

|ξ|

)
) 1

2

, g(b, ξ) =
∑
k∈Z

gk(ξ)e2πi (k−ξ)b, a.e..

In view of Theorem 4, we introduce (Z, ( , )Z , ‖ ‖Z) the Hilbert space of admissible windows:

Z =
{
ϕ ∈ S ′(R)

∣∣∣ ∫ |ϕ̂ (ξ) |2 dξ

|1 + ξ| < ∞
}
, (4.1)

(ϕ,ϕ′)Z =
∫

ϕ̂ (ξ) ϕ̂′ (ξ) dξ

|1 + ξ| , ϕ, ϕ′ ∈ Z,

‖ϕ‖Z =
√

(ϕ,ϕ)Z =
(∫

|ϕ̂ (ξ) |2 dξ

|1 + ξ|

)1/2

.

Theorem 8. We define

S : L2 ([0, 1]) × (Z ∩ S (R)) −→ Y

(f, ϕ) =
(∑

k∈Z

f̂ (k) e2πi kt, ϕ

)
�−→

∑
k∈Z

f̂ (k)
(
Sϕ

(
e2πi k·)) (b, ξ)

where, in view of Proposition 3, we set

(
Sϕ e2πi k·) (b, ξ) = e−2πi bξ F−1

ζ �→b

(
ϕ̂

(
ζ − ξ

ξ

)
δk(ζ)

)
(b).

Then S : L2 ([0, 1]) × (Z ∩ S (R)) −→ Y is continuous.

Proof. We start considering S(e2πi k·, ϕ) =
(
Sϕ e2πi k·). By definition,

(
Sϕ e2πi k·) (b, ξ) = e−2πi bξ F−1

ζ �→b

(
ϕ̂

(
ζ − ξ

ξ

)
δk(ζ)

)
(b)

= e−2πi bξ F−1
ζ �→b

(
ϕ̂

(
k − ξ

ξ

)
δk(ζ)

)
(b)
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= e−2πi bξϕ̂

(
k − ξ

ξ

)
e2πi kb

= e2πi b(k−ξ)ϕ̂

(
k − ξ

ξ

)
.

We observe that ∥∥∥∥∥ϕ̂
(
k − ·
·

)∥∥∥∥∥
2

L2
(
[0,1], 1

|ξ|

) =
∫
R

∣∣∣∣∣ϕ̂
(
k − ξ

ξ

)∣∣∣∣∣
2

1
|ξ|dξ

=
∫
R

∣∣∣ϕ̂ (ω − 1)
∣∣∣2 |ω|

|k|
|k|
|ω|2 dω

=
∫
R

∣∣∣ϕ̂ (w)
∣∣∣2 dw

|w + 1| = ‖ϕ‖2
Z . (4.2)

Therefore,

∥∥S (e2πi k·, ϕ
)∥∥2

Y
=
∥∥Sϕ e2πi k·∥∥2

Y
= ‖ϕ‖2

Z .

The functions 
{
e2πi kt}

k∈Z
are orthonormal in L2 ([0, 1]). Notice that

(
Sϕ e2πi k·, Sϕ e2πi k′·

)
Y

=
1∫

0

e2πi (k−k′)bdb

∫
R

ϕ̂

(
k − ξ

ξ

)
ϕ̂

(
k′ − ξ

ξ

)
dξ

|ξ|

= ‖ϕ‖2
Z δ0(k − k′). (4.3)

Using the definition of S and Eq. (4.3), we conclude that if

f(t) =
∑
k∈Z

f̂(k)e2πi kt, a.e.,

then

‖ (Sϕ f) (·, ·) ‖2
Y = (Sϕ f,Sϕ f)Y

=
∑
k∈Z

∑
k′∈Z

(
f̂(k) Sϕ e2πi k·, f̂(k′) Sϕ e2πi k′·

)
Y

=
∑
k∈Z

(
f̂(k) Sϕ e2πi k·, f̂(k) Sϕ e2πi k·

)
Y

=
∑
k∈Z

|f̂(k)|2
∥∥Sϕ e2πi k·∥∥2

Y

= ‖ϕ‖2
Z ‖f‖2

L2([0,1]).

Therefore, S : L2 ([0, 1]) × (Z × S (R)) → Y is a continuous operator. �
Lemma 2. Let S : L2 ([0, 1]) × (Z ∩ S (R)) → Y defined as in Theorem 8. Then, since S (R) ∩ Z is dense 
in Z, we can extend by continuity S to the whole of Z.
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Remark 1. Theorem 8 is the discrete counterpart of Theorem 5 in the case of periodic functions.

In Section 3, we proved that the DOST functions form an orthonormal basis of L2 ([0, 1]). Let us assume 
that ϕ belongs to Z defined in (4.1). Then, by Theorem 8, Sϕ : L2 ([0, 1]) → Y is continuous. So, we can 
write

(Sϕ f) =
(
Sϕ

∑
(f,Dp,τ )L2([0,1]) Dp,τ

)
=
∑

(f,Dp,τ )L2([0,1]) (Sϕ Dp,τ )

=
∑

fp,τ (Sϕ Dp,τ ) , (4.4)

where

fp,τ = (f,Dp,τ )L2([0,1])

and the sum in (4.4) is over all Dp,τ functions. Hence, in order to understand the Sϕ-transform of a general 
function f ∈ L2 ([0, 1]), it is sufficient to evaluate the coefficients fp,τ and determine once for all the 
Sϕ-transform of Dp,τ .

Notice that, for p > 0,

Dp,τ (t) = 1√
β(p)

β(p)−1∑
j=0

e2πi (β(p)+j)(t−τ/β(p))

= 1√
β(p)

β(p)−1∑
j=0

T−τ/β(p)Mβ(p)+j1 (t) .

Hence, we can write

(FDp,τ ) (ξ) = 1√
β(p)

β(p)−1∑
j=0

(
F T−τ/β(p) M(β(p)+j) 1

)
(ξ)

= 1√
β(p)

β(p)−1∑
j=0

(
M−τ/β(p) T−β(p)−j F 1

)
(ξ)

= 1√
β(p)

β(p)−1∑
j=0

(
M−τ/β(p) T−β(p)−j δ0

)
(ξ)

= 1√
β(p)

β(p)−1∑
j=0

e−2πi τ
β(p) ξ δ0 (ξ − β(p) − j)

= 1√
β(p)

β(p)−1∑
j=0

e−2πi (β(p)+j) τ
β(p) δβ(p)+j(ξ). (4.5)

Let us compute the Sϕ-transform of a basis function Dp,τ with a general window ϕ belonging to Z. We 
assume ϕ̂ continuous. By Theorem 8 and Eq. (4.5), we obtain
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e2πi bξ (Sϕ Dp,τ ) (b, ξ)

= F−1
ζ �→b

(
ϕ̂

(
ζ − ξ

ξ

)
(FDp,τ ) (ζ)

)
(b)

= F−1
ζ �→b

⎛⎝β(p)−1∑
j=0

e−2πi (β(p)+j)τ/β(p)√
β(p)

ϕ̂

(
ζ − ξ

ξ

)
δ(β(p)+j)(ζ)

⎞⎠ (b)

= F−1
ζ �→b

⎛⎝β(p)−1∑
j=0

e−2πi (β(p)+j)τ/β(p)√
β(p)

ϕ̂

(
β(p) + j − ξ

ξ

)
δ(β(p)+j)(ζ)

⎞⎠ (b)

=

⎛⎝β(p)−1∑
j=0

e−2πi (β(p)+j)τ/β(p)√
β(p)

ϕ̂

(
β(p) + j − ξ

ξ

)
e2πi b(β(p)+j)

⎞⎠ (b) . (4.6)

We set, for each fixed window ϕ, cϕp,j : R → R as

cϕp,j(ξ) = ϕ̂

(
β(p) + j − ξ

ξ

)
, ξ �= 0. (4.7)

Hence, (4.6) simplifies into

(Sϕ Dp,τ ) (b, ξ) = e−2πi bξ

⎛⎝β(p)−1∑
j=0

e2πi (β(p)+j)(b−τ/β(p))√
β(p)

cϕp,j (ξ)

⎞⎠ , ξ �= 0. (4.8)

Eqs. (4.8) and (4.4) provide an explicit expression of the Sϕ-transform of a periodic signal f in terms of its 
Stockwell coefficients fp,τ . Notice that if ϕ̂ is not a continuous function then Eqs. (4.6), (4.7) and Eq. (4.8)
must be understood as a.e. equivalences.

5. Discretization of the Sϕ-transform

Let us consider an admissible window and a dyadic decomposition of the frequency domain (see Section 3). 
We study the Sϕ-transform of the periodic signal f at ξ = ν(p). Some conditions on the window ϕ are 
necessary in order to evaluate Sϕ-transform punctually.

Assumption 1. Let ϕ̂ be a function in L∞(R) such that ϕ̂|(− 1
3 ,

1
3
) is continuous, and such that

ϕ̂ (ξ) �= 0, |ξ| < 1
3 ,

ϕ̂ (ξ) = 0, |ξ| > 1
3 , a.e.

lim
ξ→− 1

3
+
ϕ̂ (ξ) = c < ∞.

Notice that ϕ belongs to the set of admissible windows Z.
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In the sequel we want to evaluate ϕ̂ punctually. So, we need to perform a regularizing procedure.

Lemma 3. Let ϕ be an admissible function satisfying Assumption 1. Then it is possible to construct a sequence 
of continuous functions {ϕR}∞R=1 such that4

ϕ̂R is continuous,

ϕ̂R (ξ) → ϕ̂ (ξ) , punctually, (5.1)

ϕR (ξ) → ϕ (ξ) , in the set of admissible windows Z. (5.2)

Moreover, we can suppose that

ϕ̂R (ξ) = 0, ξ ∈ R

∖(
−1

3 − 2
3β(R) ,

1
3

)
, (5.3)

ϕ̂R (ξ) = ϕ̂ (ξ) , ξ ∈
(
−1

3 ,
1
3 − 2

3β (R)

)
. (5.4)

Proof. We can consider the smooth function

ωR (ξ) =

⎧⎨⎩ 0, ξ ∈ R

∖(
−1

3 − 2
3β(R) ,

1
3

)
,

1, ξ ∈
(
−1

3 ,
1
3 − 2

3β(R)

)
.

Since ϕ satisfies Assumption 1, we can define

˜̂ϕ (ξ) =
{

limξ→− 1
3
+ ϕ̂ (ξ) ξ ≤ −1

3 ,

ϕ̂ (ξ) , ξ > −1
3 .

Then ϕR(t) = F−1
ξ �→t

(
ωR (ξ) ˜̂ϕ (ξ)

)
has the desired properties. �

Let ϕ be an admissible window satisfying Assumption 1 and {ϕR}∞R=1 a sequence as in Lemma 3. Then, 
by Eq. (4.8), we can write

(SϕR
Dp′,τ ) (b, ν(p)) = e−2πibν(p)

⎛⎝β(p′)−1∑
j=0

e2πi(β(p′)+j)(t−τ/β(p′))√
β(p′)

cϕR

p′,j(ν(p))

⎞⎠ . (5.5)

Clearly, it is crucial to understand the values cϕR

p′,j(ν(p)), which depend on the window ϕ only if |p| ≤ R and 
|p′| ≤ R.

Proposition 9. Let ϕ be an admissible window satisfying Assumption 1 and {ϕR}∞R=1 be the associated 
sequence defined in Lemma 3. Then

cϕR

p′,j(ν(p)) = 0, ∀j = 0, . . . , β(p′) − 1 if p′ �= p, |p| ≤ R, |p′| ≤ R. (5.6)

Proof. We restrict ourselves to positive p′. For p′ < 0, it suffices to consider the adjoint.
Let |p| < R, as in (5.6). In view of the properties of ϕR, in particular (5.3), the condition

4 Notice that, if ϕ satisfies (5.3) and (5.4), then (5.1) implies (5.2) by means of Lebesgue’s Convergence Theorem.
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(
β(p′) + j

ν(p)

)
− 1 /∈

(
−1

3 − 2
3β (R) ,

1
3

)
, p �= p′, j = 0, . . . , β(p′) − 1 (5.7)

implies relation (5.6). If p is negative, then ν(p) < 0 and(
β(p′) + j

ν(p)

)
− 1 < −1 ≤ −1

3 − 2
3β(R) ,

hence (5.7) is fulfilled for all j = 0, . . . , β(p′) − 1.
If p positive, recalling the definition of β(p′) and ν(p′), condition (5.7) turn into

2
3

(
β(p′)
β(p) + j

β(p)

)
− 1 /∈

(
−1

3 − 2
3β (R) ,

1
3

)
, j = 0, . . . , β(p′) − 1, p �= p′. (5.8)

If p �= p′, then we have to consider two cases.

Case I – p′ < p.

The definition of β(p′) implies that β(p′) ≤ β(p)/2. Therefore,

2
3

(
β(p′)
β(p) + j

β(p)

)
− 1 ≤ 2

3

(
1
2 + j

β(p)

)
− 1

≤ −2
3 + 2

3
j

β(p) ≤ −2
3 + 2

3
β(p′) − 1

β(p) ≤ −2
3 + 1

3 − 2
3β(p) ≤ −1

3 − 2
3β(R) .

Case II – p′ > p.

We have β(p) ≤ β(p′)/2, so we can write

2
3

(
β(p′)
β(p) + j

β(p)

)
− 1 ≥ 2

3

(
2 + j

β(p)

)
− 1 ≥ 1

3 + 2
3

j

β(p) ≥ 1
3 .

Thus, (5.8) is fulfilled in both cases. �
Let ϕ be an admissible window satisfying Assumption 1 and {ϕR} be as in Lemma 3. Then, by Proposi-

tion 9, the expression (5.5) assumes a simplified form since it vanishes for all p′ �= p, provided |p′| ≤ R and 
|p| ≤ R. When p = p′ we have

(SϕR
Dp,τ ) (b, ν(p)) = e−2πi bν(p)

⎛⎝β(p)−1∑
j=0

e2πi (β(p)+j)(b−τ/β(p))√
β(p)

cϕR

p,j (ν(p))

⎞⎠ . (5.9)

Assume that cϕR

p,j (ν (p)) = 1 for all j = 0, . . . , β (p) − 1, then, via (5.9)

(SϕR
Dp,τ ) (b, ν(p)) = e−2πi bν(p)Dp,τ (b). (5.10)

In order to extend (5.10) to all Dp,τ , we introduce the following proposition.

Proposition 10. Set qχ = F−1 χ be such that

(F qχ) (ξ) = χ (ξ) =
{

0 ξ ∈
(
−∞,− 1

3
]
∪
[1
3 ,+∞

)
1 ξ ∈

(
−1 , 1) . (5.11)
3 3
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Then qχ satisfies Assumption 1 and

(S
qχR

Dp,τ ) (b, ν(p′)) = e−2πi bν(p)Dp,τ (b)δ0 (p− p′) , for all |p| ≤ R, |p′| ≤ R, (5.12)

where {qχR}∞R=1 is a sequence converging to qχ as in Lemma 3.

Proof. It follows from the definition of cϕp,j and by (5.10). �
In order to extend the punctual evaluation (5.12) to all periodic signals in L2 ([0, 1]), we need to introduce 

another regularizing procedure in the frequency domain.

Definition 2. We define the Fourier multiplier

TR : L2 ([0, 1]) → L2 ([0, 1]) (5.13)

f =
∑
k∈Z

f̂ (k) e2πi kt �→
∑

|k|<2β(R)

f̂ (k) e2πi kt. (5.14)

Proposition 11. Let f be a periodic signal and {qχR}∞R=1 defined as in Proposition 10 and TR as in Defini-
tion 2. Then

(S
qχR

TRf)
(

τ

β (p) , ν(p)
)

= (−1)τ
√
β(p)fp,τ , τ = 0, . . . , β(p) − 1, |p| ≤ R, (5.15)

where

fp,τ = (f,Dp,τ )L2([0,1]) .

Proof. Since the functions (Dp,τ ) form an orthonormal basis of L2 ([0, 1]), we have

f(t) =
∑
p′,τ ′

(f,Dp′,τ ′)L2([0,1]) Dp′,τ ′(t), a.e..

Notice that

(TRf) (t) =
∑

|p′|≤R

β(p′)−1∑
τ ′=0

fp′,τ ′Dp′,τ ′(t),

where fp′,τ ′ = (f,Dp′,τ ′)L2([0,1]). By linearity,

(S
qχR

TRf)
(

τ

β (p) , ν(p)
)

=
∑

|p′|≤R

β(p′)−1∑
τ ′=0

fp′,τ ′ (S
qχR

Dp′,τ ′)
(

τ

β (p) , ν(p)
)
.

If |p| ≤ R, by Proposition 10,

(S
qχR

TRf)
(

τ

β (p) , ν(p)
)

=
β(p)−1∑
τ ′=0

fp,τ ′ (S
qχR

Dp,τ ′)
(

τ

β (p) , ν(p)
)
. (5.16)

In Corollary 1 we proved that
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Dp,τ ′

(
τ

β(p)

)
=
√

β(p)δ0(τ − τ ′).

Therefore, by Proposition 10, (5.16) turns into

(S
qχR

TRf)
(

τ

β(p) , ν(p)
)

= e−2πi ν(p) τ
β(p) fp,τ Dp,τ

(
τ

β(p)

)
= e−2πi ν(p)τ/β(p)

√
β(p)fp,τ .

Since ν(p) = ±3/2 β(p),

e−2πi ν(p)τ/β(p) = e∓3πi τ = (−1)τ .

Therefore, finally,

(S
qχR

TRf)
(

τ

β(p) , ν(p)
)

= (−1)τ
√
β(p)fp,τ , |p| ≤ R. � (5.17)

The definition of qχR in (5.11) implies that

‖qχR − qχ‖Z → 0.

Moreover, it is immediate that, for all f ∈ L2 ([0, 1]), ‖TRf − f‖L2([0,1]) → 0. Therefore, by the continuity 
properties of S, proven in Theorem 8, for all f ∈ L2 ([0, 1])

‖(S
qχR

TRf) − (S
qχf)‖Y → 0, R → ∞. (5.18)

Eqs. (5.17) and (5.18) clarify the representation of the S-transform of a periodic signal f via the Stockwell 
coefficients fp,τ . Moreover, (5.17) explains the role of the multiplicative factor (−1)τ in front of the basis 
functions Dp,τ used by R.G. Stockwell in [27].

Remark 2. In the paper we have always considered a symmetric partition of the frequency from the positive 
and negative side. Actually, the algorithm is slightly different: see [31–33] for details.

6. Window adapted basis construction

In this section we determine a basis of L2([0, 1]) adapted to an admissible window ϕ satisfying Assump-
tion 1. As explained in the introduction, we want to find a basis Eϕ

p such that Sϕ Eϕ
p is local both in time 

and in frequency and such that the evaluation of all coefficients fϕ
p = (f, Eϕ

p )L2([0,1]) is fast: O (N logN). In 
Section 3, we proved that Dp,τ is a basis of L2 ([0, 1]) which is local both in time and in frequency. Moreover, 
in Section 5, we showed that the natural discretization of the time–frequency domain in this setting is given 
by the dyadic decomposition in the frequency domain and the τ/β(p) grid in the time domain. So, it is 
natural to change our task in finding a basis Eϕ

p,τ such that (see Fig. 3)(
Sϕ Eϕ

p,τ

)
(b, ν(p)) = e−2πi bν(p)Dp,τ (b). (6.1)

As in the previous section, in order to obtain the punctual evaluation (6.1), we introduce a sequence {ϕR}∞R=1
as in Lemma 3. In order to keep the notation easier, we set

cϕp,j (ν(p)) = cϕR

p,j (ν(p)) , |p| ≤ R.

Notice that this definition makes sense in view of (5.4).
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Fig. 3. Eϕ
p,τ basis functions in increasing frequency p-bands. Black line = real, red line = imaginary. ϕ̂ is a truncated Gaussian 

window with μ = 0 and σ = 1. Notice the similarities with Fig. 1. Indeed, in this case the ratio (δ/M)2 is approximately 0.8836
and (M/δ)2 is approximately 1.13173, see Theorem 14.

Theorem 12. Let ϕ be an admissible window satisfying Assumption 1 and

Eϕ
p,τ (t) = 1√

β(p)

β(p)−1∑
j=0

[
cϕp,j(ν (p))

]−1
e
2πi (β(p)+j)

(
t− τ

β(p)

)
. (6.2)

Then (
SϕR

Eϕ
p,τ

)
(b, ν(p)) = e−2πi bν(p)Dp,τ (b), |p| ≤ R. (6.3)

Moreover, ⋃
p∈Z

Eϕ
p ,

where

Eϕ
p =

{
Eϕ

p,τ

}
τ=0,...,β(|p|)−1

is a basis of L2 ([0, 1]).

Remark 3. Take qχ as in (5.11), then

cqχ
p,j (ν (p)) = 1,
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Fig. 4. Eϕ
p,τ basis functions in the same frequency p-band (p = 5). Black line = real, red line = imaginary. ϕ̂ is a truncated Gaussian 

window with μ = 0 and σ = 1. See Fig. 2 for comparison.

for all p and j. So, by (6.2) and (3.2),

E qχ
p,τ (t) = 1√

β(p)

β(p)−1∑
j=0

[
cqχ
p,j(ν (p))

]−1
e
2πi (β(p)+j)

(
t− τ

β(p)

)

= 1√
β(p)

β(p)−1∑
j=0

e
2πi (β(p)+j)

(
t− τ

β(p)

)

= Dp,τ (t).

Hence, the functions Eϕ
p,τ are a proper generalization of the DOST functions (see Figs. 4 and 5).

Proof. By Eq. (4.8), it follows that the functions Eϕ
p,τ do satisfy (6.3). So, we only need to prove that ⋃

p∈Z
Eϕ

p is a basis of L2 ([0, 1]).
Notice that

Eϕ
p ⊆ span

{
e2πi kt}

k∈[β(p),2β(p)−1] = span {Dp,τ}τ=0,...,β(p)−1 .

It is sufficient to check that Eϕ
p is a linear independent set. Let us assume that there exist {ατ}β(p)−1

τ=0
such that
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Fig. 5. Eϕ
p,τ basis functions with p = 4 and τ = 4 with different windows. Black line = real, red line = imaginary. The Fourier 

transform of ϕ̂ is χ(−1/3,1/3) in the first plot, then a truncated Gaussian with varying μ and σ.

β(p)−1∑
τ=0

ατE
ϕ
p,τ (t) = 0.

Then, by (6.3), for |p| ≤ R, we obtain

0 =

⎛⎝SϕR

β(p)−1∑
τ=0

ατE
ϕ
p,τ

⎞⎠ (b, ν(p))

=
β(p)−1∑
τ=0

ατ

(
SϕR

Eϕ
p,τ

)
(b, ν(p))

= e−2πi bν(p)
β(p)−1∑
τ=0

ατ Dp,τ (b).

Hence,

β(p)−1∑
τ=0

ατDp,τ (b) = 0. (6.4)

Since Dp,τ is a basis, (6.4) implies that ατ are all zeros. That is, Eϕ
p,τ are linear independent. �

See Figs. 3, 4 for an example of an Eϕ
p,τ basis with ϕ̂ equal to a truncated gaussian. In Fig. 5 there is the 

comparison of function Eϕ
4,4 with different window ϕ. In Fig. 6 is represented the decomposition of a given 

test signal with respect with different windowed basis Eϕ
p,τ .
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Fig. 6. Decompositions of a given test signal on different windowed basis.

Proposition 13. Let Eϕ
p,τ as in Theorem 12 and let f be a finite signal. Then the evaluation of the coefficients

fϕ
p,τ =

(
f,Eϕ

p,τ

)
L2([0,1])

has computational complexity O(N logN), where N is the length of f .

Proof. By Plancharel’s Theorem we can write

fϕ
p,τ =

(
f,Eϕ

p,τ

)
L2([0,1]) =

(
f̂ , Êϕ

p,τ

)
l2(Z)

.

Using the explicit expression of the basis Eϕ
p,τ , we obtain

fϕ
p,τ =

⎛⎝f̂ ,
1√
β(p)

β(p)−1∑
j=0

[
cϕp,j(ν(p))

]−1
e−2πi (β(p)+j)(τ/β(p))δβ(p)+j(·)

⎞⎠
l2(Z)

= 1√
β(p)

β(p)−1∑
j=0

f̂(β(p) + j)
[
cϕp,j(ν(p))

]−1
e2πi (β(p)+j)(τ/β(p))

=

⎛⎝Rϕf̂ ,
1√
β(p)

β(p)−1∑
j=0

e−2πi (β(p)+j)(τ/β(p))δβ(p)+j(·)

⎞⎠
l2(Z)

=
(
F−1 Rϕf̂ , Dp,τ

)
L2([0,1])

,

where Rϕ is a sequence in Z such that
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Rϕ(β(p) + j) =
[
cϕp,j(ν(p))

]−1 (6.5)

for all p and related j. Hence,

fϕ
p,τ =

(
f,Eϕ

p,τ

)
L2([0,1]) =

(
f̃ , Dp,τ

)
L2([0,1]) (6.6)

where f̃ = F−1 Rϕf̂ . Given f̃ , computing (6.6) using the FDOST-algorithm introduced in [33] has complexity 
O (N logN) and computing f̃ via FFT has complexity O (N logN). So, the computational complexity 
remains O (N logN) (see Fig. 6). �
Remark 4. It is worth checking explicitly the computational complexity of the algorithm. To perform this 
task, we start evaluating the column vector fϕ

p given by

fϕ
p = {fϕ

p,τ}
β(p)−1
τ=0

=
{(

f,Eϕ
p,τ

)
L2([0,1])

}β(p)−1

τ=0

=
{(

f̂ , Êϕ
p,τ

)
l2(Z)

}β(p)−1

τ=0

=

⎧⎪⎨⎪⎩
⎛⎝f̂ ,

1√
β(p)

β(p)−1∑
j=0

[
cϕp,j(ν(p))

]−1
e−2πi (β(p)+j)(τ/β(p))δβ(p)+j(·)

⎞⎠
l2(Z)

⎫⎪⎬⎪⎭
β(p)−1

τ=0

=

⎧⎨⎩ 1√
β(p)

β(p)−1∑
j=0

f̂(β(p) + j)
[
cϕp,j(ν(p))

]−1
e2πi (β(p)+j)(τ/β(p))

⎫⎬⎭
β(p)−1

τ=0

=

⎧⎨⎩ 1√
β(p)

β(p)−1∑
j=0

f̂(β(p) + j)
[
cϕp,j(ν(p))

]−1
e2πi j(τ/β(p))

⎫⎬⎭
β(p)−1

τ=0

=
(
F−1
j �→τ

((
Rϕ f̂

)
|β(p),...,2β(p)−1(j)

))
(τ)

where Rϕ is defined as in (6.5). Therefore, first we have to perform the FFT of the signal f (O (N logN)), 
and the multiplication by Rϕ (O(N)), then at each p band we need to use the FFT to perform the anti 
Fourier transform with computational complexity O (β(p) log β(p)). Summing up the contribution of each 
p-band we obtain the computational complexity of O(N logN).

The basis 
{
Eϕ

p,τ

}
p,τ

is in general not orthogonal nor normal. Nevertheless, we can normalize it setting

Fϕ
p,τ (t) =

Eϕ
p,τ (t)

‖Eϕ
p,τ‖L2([0,1])

, (6.7)

so that ∥∥Fϕ
p,τ

∥∥
L2([0,1]) = 1.

Notice that
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∥∥Eϕ
p,τ

∥∥
L2([0,1]) =

∥∥∥Eϕ
p,τ ′

∥∥∥
L2([0,1])

= Nϕ
p (6.8)

depends just on the p-band, not on τ .
The basis 

{
Fϕ
p,τ (t)

}
p,τ

fails in general to be orthogonal. Nevertheless, assuming a mild condition on ϕ, 
we can prove that it is a frame.

Theorem 14. Let ϕ be an admissible window function satisfying Assumption 1, and such that

inf
ξ∈(−1/3,1/3)

∣∣∣ϕ̂(ξ)
∣∣∣ ≥ δ > 0 (6.9)

sup
ξ∈(−1/3,1/3)

∣∣∣ϕ̂(ξ)
∣∣∣ ≤ M < ∞ (6.10)

then the basis 
⋃

p∈Z
Fϕ
p is a frame of L2 ([0, 1]), where

Fϕ
p =

{
Fϕ
p,τ

}
τ=0,...,β(|p|) .

In particular (
δ
M

)2

‖f‖2
L2([0,1]) ≤

∑
p,τ

∣∣∣(f, Fϕ
p,τ

)
L2([0,1])

∣∣∣2 ≤
(
M

δ

)2

‖f‖2
L2([0,1]) .

Proof. Notice that under the hypothesis (6.9), (6.10), by (6.8)

1
M

≤ Nϕ
p ≤ 1

δ
, ∀p ∈ Z. (6.11)

Observe, by a slight variation of (6.6), that(
f, Fϕ

p,τ

)
L2([0,1]) =

(
F−1 R̃ϕf̂ , Dp,τ

)
L2([0,1])

where R̃ϕ is a sequence such that

R̃ϕ(β(p) + j) = Rϕ(β(p) + j)
Nϕ

p
=

[
cϕp,j(ν(p))

]−1

Nϕ
p

,

where Nϕ
p is as in (6.8).

If the window ϕ satisfies condition (6.10), by (6.11), we have

sup
k∈Z

{∣∣∣R̃ϕ(k)
∣∣∣} ≤ M

δ
< ∞, (6.12)

inf
k∈Z

{∣∣∣R̃ϕ(k)
∣∣∣} ≥ δ

M
> 0. (6.13)

Hence, since 
⋃

p∈Z
Dp is an orthonormal basis and since F is a unitary operator from L2 ([0, 1]) to l2(Z), we 

obtain

∑
p,τ

∣∣∣(f, Fϕ
p,τ

)
L2([0,1])

∣∣∣2 =
∑
p,τ

∣∣∣∣(F−1 R̃ϕf̂ , Dp,τ

)
L2([0,1])

∣∣∣∣2 =
∥∥∥F−1 R̃ϕf̂

∥∥∥2

L2([0,1])

=
∥∥∥R̃ϕf̂

∥∥∥
2

≤
(

sup
{∣∣∣R̃ϕ(k)

∣∣∣})2 ∥∥∥f̂∥∥∥2

2
≤
(
M
)2

‖f‖2
L2([0,1]) ,
l (Z) k∈Z l (Z) δ
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and

∑
p,τ

∣∣∣(f, Fϕ
p,τ

)
L2([0,1])

∣∣∣2 =
∑
p,τ

∣∣∣∣(F−1 R̃ϕf̂ , Dp,τ

)
L2([0,1])

∣∣∣∣2 =
∥∥∥F−1 R̃ϕf̂

∥∥∥2

L2([0,1])

=
∥∥∥R̃ϕf̂

∥∥∥
l2(Z)

≥
(

inf
k∈Z

{∣∣∣R̃ϕ(k)
∣∣∣})2 ∥∥∥f̂∥∥∥2

l2(Z)
≥
(

δ
M

)2

‖f‖2
L2([0,1]) . �

Since 
⋃

p∈Z
Fϕ
p forms a frame, it is possible to obtain abstractly the canonical dual frame, we denote F̃ϕ

p,τ . 
So, following the same scheme of Proposition 11 and Eq. (6.3), we have

(SϕR
TRf)

(
τ

β(p) , ν(p)
)

=

⎛⎝SϕTR

∑
p′,τ ′

(
f, F̃ϕ

p′,τ ′

)
L2([0,1])

Fϕ
p′,τ ′

⎞⎠( τ

β(p) , ν(p)
)

=
∑

|p′|≤R

β(p′)−1∑
τ ′=0

(
f, F̃ϕ

p′,τ ′

)
L2([0,1])

(
SϕR

Fϕ
p′,τ ′

)( τ

β(p) , ν(p)
)

=
∑
p′≤R

β(p′)−1∑
τ ′=0

(
f, F̃ϕ

p′,τ ′

)
L2([0,1])

e−2πi τ
β(p) ν(p′)

Np′
Dp′,τ ′

(
τ

β(p) , ν(p)
)

= (−1)τ
√
β(p)

(
f, F̃ϕ

p,τ

)
L2([0,1])

Np
, |p| ≤ R.

Remark 5. Notice that, when in Eqs. (6.9) and (6.10) δ = M , we a have a tight-frame. In the case of the 
DOST basis, i.e. E qχ

p,τ = Dp,τ it is clear that δ = M = 1. So Dp,τ is a tight-frame. Actually, we have proven 
more: Dp,τ is an orthonormal basis.
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