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In this paper, a high resolution time–frequency analysis method, termed as second-
order transient-extracting transform (STET) is proposed in the analysis of highly
non-stationary signals with strong impulse components for machine fault diagnosis. The
limitation of two recently published post-processing techniques are discussed and
highlighted based on a theoretical analysis of the first and the second-order frequency-
varying models. A STET technique is then proposed to overcome this limitation. The
discrete implementation of STET is also presented in the study and the performance of
the technique is examined by a number of simulated numerical data and three sets of
experimental data. The results confirm the effectiveness of the proposed technique in
the analysis of noise contaminated signals as well as bearing defect signals acquired under
varying speed condition.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Rolling element bearing plays an important role in rotating machinery such as wind turbines, aero-engines and
high-speed trains. Unfortunately, bearing failure is one of the most frequently reported reasons for machine breakdown,
and a great effort has been devoted by researchers and engineers to prevent such occurrences. Vibration-based condition-
monitoring (CM) is one of the most effective non-intrusive technique for the detection of a bearing defect, which has been
widely employed by practitioners in the last few decades [1,2]. When a rolling element passes through a defective surface or
when a defective element rolls on a race surface, an impulse signal will be generated, and the signal is then amplified by the
bearing resonance which can be captured by vibration sensors installed on the bearing house [3,4]. However, due to
background noise and signal interference from other sources, a bearing defect, particularly incipient defect can often go
undetected, which highlights the needs to develop effective signal processing techniques for an accurate and reliable bearing
fault diagnosis.

A critical criterion of an effective bearing fault diagnosis program is that it can detect a defect information in an incipient
stage even under the interference of machine operating noise. Various signal processing techniques have been developed to
serve this purpose, which can be generally divided into three categories, e.g. time domain analysis, frequency domain anal-
ysis and time–frequency (TF) analysis (TFA) techniques. TFA technique has been well employed in machine fault diagnosis
due to its ability in dealing with non-stationary CM signals caused by changing load or operating speed conditions [5-8].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2020.107069&domain=pdf
https://doi.org/10.1016/j.ymssp.2020.107069
mailto:yugang2010@163.com
mailto:trlin888@163.com
https://doi.org/10.1016/j.ymssp.2020.107069
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


2 G. Yu, T.R. Lin /Mechanical Systems and Signal Processing 147 (2021) 107069
Short-time Fourier transform (STFT) and wavelet transform (WT) are two mostly employed conventional TFA techniques
in machine fault diagnosis. Both techniques belong to the linear TFA category which characterize the TF feature by calculat-
ing the inner product between a signal and a series of TF basis functions [9,10]. However, the basis functions designed in the
linear TFA technique are implicitly assumed to be stationary or quasi-stationary in the analyzed timeframe which then
restricts the application of the technique in dealing with signals having a rapid changing dynamic. To overcome such short-
coming, several non-linear TFA techniques were proposed in recent years. For instance, linear chirplet transform [11], local
polynomial transform [12], polynomial chirplet transform (PCT) [9], parameterized TF transform [10] and matching demod-
ulation transform [13] are some of these recent attempts. All these methods aim to construct new basis functions based on
the non-linearity of the analyzed signal. The newly designed basis function performs better in the analysis of non-stationary
signals than the linear basis function, though it will have the same limitation when the non-linearity of a signal increases.
This is because that the non-linearity of a practical signal is difficult to predict or estimate in advance. Moreover, due to the
Heisenberg uncertainty principle, these existing non-linear TFA techniques often suffer from the diffused TF energy problem.

Recently, the new trend in the development of TFA techniques is to characterize the non-linear features of a non-
stationary signal using post-processing procedures, such as reassignment method (RM) [14,15], synchrosqueezing transform
[16,17] (SST) and synchroextracting transform (SET) [18-21]. It is well known from the Heisenberg uncertainty principle that
the TF representation (TFR) generated by a linear TFA technique usually smears around the instantaneous frequency (IF) tra-
jectory of the signal. To overcome this problem, the RM technique reassigns the diffused TF energy into the IF trajectory in
both time and frequency axes [14], which then produces a higher energy concentrated TFR in the TF plane. However, a draw-
back of RM is that the TF result cannot be used for signal reconstruction. In contrast, because SST technique only reassigns
the TF coefficients in the frequency direction [16], it retains the reconstruction ability of the TF result. Although the TF res-
olution of the SST is not higher than that of the RM, the practical application of the SST is much more general due to its
reversibility. Moreover, with the development of high-order SST, it has been proved that SST analysis can achieve a better
resolution than RM [22,23]. The drawback of SST is that it lacks the capacity to remove the noise interference when a signal
is contaminated by noise. This is because that the post-processing procedure of SST may reassign the noise into the eventual
TFR. To address this issue, SET, a recently proposed technique can retain the most-related TF coefficients and discard the
weak-related TF coefficients to suppress the noise interference [18].

Several recently published works utilizing SST or SET technique and combined them with other non-linear TFA methods
to further improve the performance of SST and SET techniques. For instance, Wang et al first constructed an iterative TFA
transform to demodulate a non-linear signal with good energy concentration, and then reassigned the corresponding TF
coefficients using SST to enhance the TF resolution [13]. Shi et al proposed a generalized stepwise demodulation transform
to come along with SST [24]. Tu et al introduced a demodulated SST to deal with a fast varying vibration signal [5]. Yu et al
combined a PCT with SET to capture the changing dynamic in non-stationary signals [25].

For both SST and SET, they analyze a signal by assuming that the IF of the signal can be locally approximated as a time
unvarying segment in the analyzed window frame. SST and SET have also been expanded into high-order polynomial models
for the analysis of more complex signals. In theory, such high-order methods have a better ability to deal with signals con-
taining strong time-varying modes. For example, Oberlin et al proposed a concentrated SST technique by defining a precise IF
estimate for a second-order frequency-modulated signal [22]. Wang et al introduced an improved SST by constructing an IF
estimate to precisely match the characteristic of a fast varying signal [3]. Pham et al put forward a generalized SST using a
higher-order estimate of IF [23]. Hu et al proposed a higher-order SST based on WT [26]. Whilst Yu et al employed a fix point
iteration algorithm to progressively improve the TF resolution of SST [27].

However, an impulsive-like signal cannot be well approximated by a time-varying model since the impulses generated by
a defect usually occurs in a very short time duration and has a broadband frequency. This implies that the time-varying
assumption made by the above TFA techniques does not fit well to characterize a signal produced by a bearing fault. A couple
of recently published techniques such as time-reassigned SST [28] and transient-extracting transform (TET) [29] which used
alternative frequency-varying models were proposed in an attempt to overcome the limitation of time-varying models used
in the above-mentioned TFA techniques in the analysis of impulsive-like signals. However, these two techniques are not ade-
quate in the analysis of more complex signals since they are established based on first-order models. To overcome this prob-
lem, an energy concentrated TFA using a second-order frequency-varying model and based on TET framework is proposed in
this paper for the analysis of impulsive-like signals.

The remainder of this paper is organized as follows. In Section 2, the theoretical basis of TSST and TET methods are
reviewed based on Dirac delta function and a second-order frequency-varying model. Section 3 provides a detailed layout
and elaboration of the proposed method. Numerical and experimental validations are given in Section 4 and Section 5,
respectively. Conclusions are drawn in Section 6.

2. A review of the theoretical basis of TSST and TET techniques

2.1. A theoretical background of TSST and TET

TSST and TET are proposed as the post-processing tools of STFT given by Eq. (1).
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Gðt;xÞ ¼
Z þ1

�1
gðu� tÞsðuÞe�ixudu: ð1Þ
where gðu� tÞ is the sliding window function and suppðgÞ 2 ½�D;D�. An impulsive-like signal often occurs in a very short
time duration, thus, Dirac delta function can be the ideal model to describe such a signal. To start with, let’s first consider
the analysis of an impulse signal given in Eq. (2) using STFT,
sðtÞ ¼ Adðt � t0Þ ð2Þ

where A is the amplitude of the impulse signal which occurs at the time instant t0. Substituting Eq. (2) into Eq. (1) to have
Gðt;xÞ ¼ Agðt0 � tÞe�ixt0 ð3Þ

Considering that the window gðtÞ is compactly supported in the region t 2 ½�D;D�, the STFT result of the Dirac delta func-

tion should spread around the line t ¼ t0. Refs. [28,29] used a two-dimensional (2D) group delay (GD) estimate to reallocate
the diffused energy of STFT of the signal, which is written as
t̂ðt;xÞ ¼ Re
i@xGðt;xÞ
Gðt;xÞ

� �
: ð4Þ
where ReðÞ denotes the real part. Substituting Eq. (3) into Eq. (4) to have the following expression,
t̂ðt;xÞ ¼ t0: ð5Þ

Eq. (5) means that the 2D GD estimate of the Dirac delta function calculated using Eq. (4) is consistent with the occurring

time instant of the impulse. Inspired by this property, TSST and TET consider two strategies respectively to improve the TF
resolution of STFT. The expression of TSST is given by
Tsðu;xÞ ¼
Z þ1

�1
Gðt;xÞdðu� t̂ðt;xÞÞdt: ð6Þ
It is shown in Eq. (6) that TSST employs an operator
Rþ1
�1 dðu� t̂ðt;xÞÞdt to reassign the diffused STFT result into the occur-

ring time instant of the impulse. Whilst according to Ref. [29], the expression of the TET is given in Eq. (7).
Teðt;xÞ ¼ Gðt;xÞdðt � t̂ðt;xÞÞ: ð7Þ

Eq. (7) shows that TET uses a SET-like operator dðt � t̂ðt;xÞÞ to retain only the TF coefficients at the time instant t0 while

discarding the weakly-related TF coefficients. Combing Eq. (6) and Eq. (7), we can further derive the following expression:
ĝð0Þð Þ�1Tsðt;xÞ ¼ gð0Þð Þ�1Teðt;xÞ ¼ Ae�ixt0dðt � t0Þ ð8Þ

where ĝðÞ denotes the Fourier transform of the sliding window function. Eq. (8) demonstrates that both TSST and TET have
the same ability to achieve a higher TF resolution for a noise-free impulsive-like signal. However, it is noted that TET algo-
rithm is more effective in capturing the TF feature in the signal using the operator dðt � t̂ðt;xÞÞ for a noise-contaminated
signal. This is because that the noise can spread in the entire TF plane and the reassignment procedure used by TSST will
unavoidably reassign both signal and noise into the TFR. On the contrary, the post-processing operator of TET can remove
both weakly-related TF coefficients and noise at the same time leading to the well desired noise-suppression property of
TET technique.

A numerical example is given in the following text to further illustrate the performance of TSST and TET. In this example,
a discrete delta function is modelled as sðnÞ ¼ dðn� 0:5Þ, which is sampled using a 200 Hz sampling frequency as shown in
Fig. 1(a). The STFT result of the signal is displayed in Fig. 1(b) where the TF energy of this signal is found to smear around the
time instant at 0.5 s. The corresponding TSST and TET results are shown in Fig. 1(c-d). It is shown that both methods can
effectively produce an energy concentrated and high resolution TF result of the signal, which is consistent with the above
theoretical analysis. A Gaussian white noise is then added onto this signal as shown in Fig. 2(a). The STFT, TSST and TET
results of the noise-added signal are shown in Fig. 2(b-d) respectively. Once again, both TSST and TET methods produce
higher energy concentrated TFRs than that of STFT. However, the TF feature of the TSST result is not as prominent as that
of the TET result due to noise interference. The result confirms the theoretical discussion presented in the previous text.

2.2. The limitation of TET

In this section, a theoretical analysis of TET when dealing with first and second-order frequency-varying model signals is
presented. A frequency-varying model described by Eq. (9) is used to analyze the theoretical performance of TET.
ŝðxÞ ¼ AðxÞeiuðxÞ: ð9Þ

where ŝðxÞ denotes the Fourier transform of the signal, AðxÞ and uðxÞ are the signal amplitude and phase in the frequency
domain and the parameter �u0ðxÞ is the GD of the signal. For the Dirac delta function, a more general mathematic model can



Fig. 1. (a) Dirac delta function signal, (b) STFT result, (c) TSST result and (d) TET result.

Fig. 2. (a) Dirac delta function signal added with noise, (b) STFT result, (c) TSST result and (d) TET result.
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be obtained by assuming that 9e is sufficient small, jA0ðxÞj 6 e and ju00ðxÞj 6 e for 8x. Then the frequency-varying model of
the Dirac delta function can be re-expressed as
ŝðnÞ ¼ AðxÞeiðuðxÞþu0ðxÞðn�xÞÞ: ð10Þ

Eq. (10) is the first-order expansion of the signal given in Eq. (9), which is often termed as the first-order frequency-

varying model. To analyze this model, the STFT expression in frequency domain is needed, which can be written as
Gðt;xÞ ¼ ð2pÞ�1
Z þ1

�1
ŝðnÞĝðn�xÞeiðn�xÞtdn: ð11Þ
where ĝðxÞ denotes the Fourier transform of the window function gðtÞ ¼ e�ð2rÞ�1t2 and ĝðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2rp

p
e�0:5rx2 . Substituting Eq.

(10) into Eq. (11) to derive
Gðt;xÞ ¼ ð2pÞ�1AðxÞeiuðxÞ Rþ1
�1 eiðtþu

0ðxÞÞðn�xÞĝðn�xÞdn
¼ AðxÞeiuðxÞgðt þu0ðxÞÞ
¼ AðxÞeiuðxÞe�

ðtþu0 ðxÞÞ2
2r :

ð12Þ
Substituting Eq. (12) into Eq. (4) to have the following equation,
t̂ðt;xÞ ¼ �u0ðxÞ: ð13Þ

Eq. (13) demonstrates that Eq. (4) can provide an exact estimate for the GD of the first-order frequency-varying signal.

Based on the above analysis, the TET result of the signal given in Eq. (10) can be derived as
Teðt;xÞ ¼ AðxÞeiuðxÞe�ð2rÞ�1ðtþu0 ðxÞÞ2dðt � t̂ðt;xÞÞ
¼ AðxÞeiuðxÞdðt þu0ðxÞÞ:

ð14Þ
The result given by Eq. (14) leads to the same conclusion as that from the Eq. (7). Furthermore, the TET result can also be
used for the following signal reconstruction [29],
ŝðxÞ ¼ Teð�u0ðxÞ;xÞ: ð15Þ

In discrete data processing, Eq. (14) is often implemented by the following expression
Teðn; kÞ ¼ Gðn; kÞ; if nþu0ðkÞj j < 4n
2

0 ; otherwise

�
ð16Þ
where n, k and 4n denote the discrete time variable, frequency variable and the sampling time interval respectively. It is
shown from Eq. (16) that TET retains the TF coefficients of the STFT result in the TF region
n 2 �u0ðkÞ � 0:54 n ; �u0ðkÞ þ 0:54 nð Þ. Whilst the TF coefficients in the TF region
n R �u0ðkÞ � 0:54 n ; �u0ðkÞ þ 0:54 nð Þ is discarded.

To further explore the property of TET, a second-order frequency-varying model is established in the following analysis by
the assumption that, 9e is sufficient small, jA0ðxÞj 6 e and ju000ðxÞj 6 e for 8x. As a result, the signal given by Eq. (9) can be
rewritten as
ŝðnÞ ¼ AðxÞeiðuðxÞþu0ðxÞðn�xÞþ0:5u00 ðxÞðn�xÞ2Þ: ð17Þ

Now substituting Eq. (17) into Eq. (11) to have
Gðt;xÞ ¼ ð2pÞ�1 Rþ1
�1 AðxÞeiðuðxÞþu0 ðxÞðn�xÞþ0:5u00 ðxÞðn�xÞ2Þ ffiffiffiffiffiffiffiffiffiffi

2rp
p

e�
rðn�xÞ2

2 eiðn�xÞtdn

¼
ffiffiffiffiffiffiffiffiffiffi
2rp

p
AðxÞeiuðxÞð2pÞ�1 Rþ1

�1 e0:5ðiu
00ðxÞ�rÞðn�xÞ2eiðtþu

0 ðxÞÞðn�xÞdn

¼ AðxÞeiuðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
r�iu00 ðxÞ

q
e�

ðtþu0 ðxÞÞ2
2r�2iu00 ðxÞ:

ð18Þ
From Eq. (4), the 2D GD estimate of Eq. (18) can be derived
t̂ðt;xÞ ¼ �u0ðxÞ þ u00ðxÞ2
r2 þu00ðxÞ2

ðt þu0ðxÞÞ: ð19Þ
From Eq. (19), the TET result of the second-order frequency-varying model can be deduced as
Teðt;xÞ ¼ Gðt;xÞd t � t̂ðt;xÞ� �
¼ Gðt;xÞd t þu0ðxÞ � u00 ðxÞ2

r2þu00 ðxÞ2 ðt þu0ðxÞÞ
� 	

¼ Gðt;xÞd r2

r2þu00 ðxÞ2 ðt þu0ðxÞÞ
� 	

:

ð20Þ
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The discrete implementation of Eq. (20) is
Teðn; kÞ ¼ Gðn; kÞ; if r2

r2þu00ðkÞ2 ðnþu0ðkÞÞ



 


 < 4n

2

0 ; otherwise:

(
ð21Þ
From Eq. (21), it becomes obvious that the TET result described by Eq. (17) can retain the STFT result in the TF region

n 2 �u0ðkÞ � r�2ðr2 þu00ðkÞ2Þ0:54 n ; �u0ðkÞ þ r�2ðr2 þu00ðkÞ2Þ0:54 n
� 	

. Comparing Eq. (16) with Eq. (21), it is found

that the TET result of the second-order frequency-varying signal is less energy concentrated than that of the first-order
frequency-varying signal. Moreover, following an increase of u00ðkÞ, the TET result will be more diffused. Therefore, it can
be concluded that TET technique will not perform well in dealing with signals having the second-order frequency-varying
characteristic.

3. Second-order transient-extracting transform (STET)

3.1. The theoretical derivation of STET

To construct an improved TET for the analysis of the signal described by Eq. (17), we first derive the following expression
according to Eq. (19)
�u0ðxÞ ¼ r2 þu00ðxÞ2
r2 t̂ðt;xÞ � tu00ðxÞ2

r2 þu00ðxÞ2
 !

: ð22Þ
Eq. (22) provides an indication of how to calculate the new 2D GD estimate in the analysis of a second-order signal. To
achieve this purpose, we first define a novel 2D estimate x̂ðt;xÞ given by
x̂ðt;xÞ ¼ Re
@tGðt;xÞ
Gðt;xÞ

� �
¼ �rðt þu0ðxÞÞ

r2 þu00ðxÞ2
: ð23Þ
For the estimates t̂ðt;xÞ and x̂ðt;xÞ, we respectively calculate the partial derivative of them with respect to time and
frequency. The related expressions are listed in Eqs. (24–27).
@t t̂ðt;xÞ ¼ u00ðxÞ2
r2 þu00ðxÞ2

: ð24Þ

@x t̂ðt;xÞ ¼ � r2u00ðxÞ
r2 þu00ðxÞ2

: ð25Þ

@tx̂ðt;xÞ ¼ � r
r2 þu00ðxÞ2

: ð26Þ

@xx̂ðt;xÞ ¼ � ru00ðxÞ
r2 þu00ðxÞ2

: ð27Þ
Inspired by Eq. (22), the following expression can now be constructed,
t̂
½2�ðt;xÞ ¼ � @xx̂ðt;xÞ

@tx̂ðt;xÞ@x t̂ðt;xÞ t̂ðt;xÞ � t@t t̂ðt;xÞ� �
: ð28Þ
where the superscript [2] indicates a second-order estimate. Substituting Eqs. (24–27) into Eq. (22), we can derive the
following
t̂
½2�ðt;xÞ ¼ �u0ðxÞ ð29Þ
Eq. (29) confirms that an exact 2D GD estimate for the second-order frequency-varying model can be obtained. However,
to construct the 2D GD estimate given by Eq. (28), it is necessary to ensure that @tx̂ðt;xÞ@x t̂ðt;xÞ

 

–0. Therefore, a modified
2D GD estimate of the second-order model is given below
t̂
½2�ðt;xÞ ¼ � @xx̂ðt;xÞ

@tx̂ðt;xÞ@x t̂ðt;xÞ t̂ðt;xÞ � t@t t̂ðt;xÞ� �
if @tx̂ðt;xÞ@x t̂ðt;xÞ

 

 > 1�10

t̂ðt;xÞ otherwise

(
: ð30Þ
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It is shown from the above analysis that, for the second-order model, the t̂
½2�ðt;xÞ can achieve a better estimate than the

t̂ðt;xÞ. However, apart from the GD estimate, it is also necessary to rectify the amplitude of the STFT result given by Eq. (18).
For this purpose, we first calculate the STFT in the GD trajectory t ¼ �u0ðxÞ, i.e.
Fig. 3.
zoomed
Gð�u0ðxÞ;xÞ ¼ AðxÞeiuðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
r�iu00 ðxÞ

q
¼ AðxÞeiuðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2þu00 ðxÞ2 þ i ru00ðxÞ
r2þu00 ðxÞ2

q
¼ AðxÞeiuðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� @tx̂ðt;xÞ@x t̂ðt;xÞ

@xx̂ðt;xÞ � i@xx̂ðt;xÞ
q ð31Þ
Inspired by Eq. (31), a rectified STFT G½2�ðt;xÞ can be constructed using
G½2�ðt;xÞ ¼ Gðt;xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� @tx̂ðt;xÞ@x t̂ðt;xÞ

@xx̂ðt;xÞ � i@xx̂ðt;xÞ
q ð32Þ
Combing Eq. (32) with Eq. (30), a modified G½2�ðt;xÞ for the second-order frequency-varying signal can be calculated as
G½2�ðt;xÞ ¼
Gðt;xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�@t x̂ðt;xÞ@x t̂ðt;xÞ
@xx̂ðt;xÞ �i@xx̂ðt;xÞ

q if @tx̂ðt;xÞ@x t̂ðt;xÞ

 

 > 1�10

Gðt;xÞ otherwise

8><
>: : ð33Þ
Finally, an improved TET, termed as the second-order TET (STET) can be obtained as
Te½2�ðt;xÞ ¼ G½2�ðt;xÞdðt � t̂
½2�ðt;xÞÞ: ð34Þ
Substituting Eq. (29) and Eq. (32) into Eq. (34), the STET of the signal given by Eq. (17) can be derived as
Te½2�ðt;xÞ ¼ AðxÞeiuðxÞdðt þu0ðxÞÞ: ð35Þ
(a) The time waveform of the signal given in Eq. (36), (b) STFT result, (c) TET result, (d) zoomed version of the TET result, (e) STET result and (f)
version of the STET result.
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Eq. (35) illustrates that the proposed STET can generate a high-resolution TFR for the second-order frequency-varying sig-
nal. A numerical model of a frequency-varying signal is given below to exemplify the enhancement of STET when comparing
with TET
ŝðxÞ ¼ e0:05xe�ið10xþ1:5sinð1:5xÞÞ: ð36Þ

where the sampling frequency and the sampling time are 40 Hz and 20 s respectively. The time domain waveform of the
signal and the STFT result are plotted in Fig. 3(a-b). It is observed that the TF energy of the STFT result diffuses around
the GD trajectory where there are multiple frequency points for each time instant. For comparison, the TET and STET results
are displayed in Fig. 3(c-f). It is obvious that TET and STET can achieve a better energy concentrated TFR than STFT. It is fur-
ther shown in the zoomed version that the proposed STET can generate a better TF representation than that of TET. This con-
firms that STET possesses a better capacity to characterize the TF feature of a strong frequency-varying signal than TET.

Computational efficiency is an important indicator for the effectiveness of a TFA algorithm. To test the efficiency of the
algorithm, the execution time of the proposed algorithm is compared to that of some well employed TFA algorithms. The
configurations of the computer used in the simulation are: A laptop computer having an Intel Core i7-6500 2.5 GHz CPU,
8.0 GB of DDR3 RAM, operated based on a Window 10 OS system, and the code is executed using MATLAB R2016a. The exe-
cution times of various algorithms are listed in Table 1 for comparison. The result shows that the execution time of the pro-
posed algorithm for the analysis of the signal described by Eq. (36) is 0.39 s, which is not too much different than that of
other algorithms.

3.2. The implementation of STET

In this section, we focus mainly on the algorithm implementation of STET, where t̂ðt;xÞ and its partial derivative are con-
sidered first. Based on Eq. (4), the parameter @xGðt;xÞ can be obtained by
@xGðt;xÞ ¼ �i
Rþ1
�1 gðu� tÞsðuÞue�ixudu

¼ �iGsuðt;xÞ ð37Þ
Thus, the t̂ðt;xÞ can also be obtained by
t̂ðt;xÞ ¼ Re
Gsuðt;xÞ
Gðt;xÞ

� �
: ð38Þ
Moreover, the derivative of the t̂ðt;xÞ with respect to time and frequency can be derived by Eq. (39) and Eq. (40),
respectively.
@t t̂ðt;xÞ ¼ Re @t
Gsuðt;xÞ
Gðt;xÞ

� 	� 	
¼ Re

�t
R þ1
�1 g0 ðu�tÞsðuÞue�ixuduGðt;xÞþGsuðt;xÞt

R þ1
�1 g0ðu�tÞsðuÞe�ixudu

Gðt;xÞð Þ2

� �

¼ Re �tGsu
g0 ðt;xÞGðt;xÞþGsuðt;xÞtGg0 ðt;xÞ

Gðt;xÞð Þ2
� 	 ð39Þ
where g0ðÞ denotes the derivative of the window function with respect to the time variable.
@x t̂ðt;xÞ ¼ Re @x
Gsuðt;xÞ
Gðt;xÞ

� 	� 	
¼ Re

�i
R þ1
�1 gðu�tÞsðuÞu2e�ixuduGðt;xÞþi Gsuðt;xÞð Þ2

Gðt;xÞð Þ2

� �

¼ Re
�iGsu2 ðt;xÞGðt;xÞþi Gsuðt;xÞð Þ2

Gðt;xÞð Þ2
� 	 ð40Þ
To obtain x̂ðt;xÞ, we first calculate @tGðt;xÞ in Eq. (23).
@tGðt;xÞ ¼ �
Z þ1

�1
g0ðu� tÞsðuÞe�ixudu ¼ �Gg0 ðt;xÞ: ð41Þ
The x̂ðt;xÞ can now be obtained as
Table 1
A comparison of the execution times using different
algorithms.

Algorithm STFT TET TSST STET

Time (s) 0.055 0.177 0.428 0.39
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x̂ðt;xÞ ¼ Re �Gg0 ðt;xÞ
Gðt;xÞ

 !
ð42Þ
Furthermore, the derivative of x̂ðt;xÞ with respect to time and frequency can be derived from Eq. (43) and Eq. (44)
respectively.
@tx̂ðt;xÞ ¼ Re � @tG
g0 ðt;xÞGðt;xÞ�Gg0 ðt;xÞ@tGðt;xÞ

ðGðt;xÞÞ2
� 	

¼ Re Gg00 ðt;xÞGðt;xÞ�ðGg0 ðt;xÞÞ2

ðGðt;xÞÞ2

� � ð43Þ
where @tG
g0 ðt;xÞ ¼ � Rþ1

�1 g00ðu� tÞsðuÞe�ixudu ¼ �Gg00 ðt;xÞ and g00ðÞ denotes the second-order derivative of the window
function with respect to the time variable.
@xx̂ðt;xÞ ¼ Re � @xGg0 ðt;xÞGðt;xÞ�Gg0 ðt;xÞ@xGðt;xÞ
ðGðt;xÞÞ2

� 	
¼ Re iGsu

g0 ðt;xÞGðt;xÞ�iGg0 ðt;xÞGsuðt;xÞ
ðGðt;xÞÞ2

� 	 ð44Þ
At the beginning of this section, the Gaussian window function gðtÞ ¼ e�ð2rÞ�1t2 is used in the analysis. The derivative of the

window function, i.e. g0ðtÞ and g00ðtÞ in the above equations can also be obtained that g0ðtÞ ¼ �ðrÞ�1te�ð2rÞ�1t2 and

g00ðtÞ ¼ r�2ðt2 � r2Þe�ð2rÞ�1t2 . Finally, the Gsuðt;xÞ, Gsu
g0 ðt;xÞ, Gg0 ðt;xÞ, Gsu2 ðt;xÞ and Gg00 ðt;xÞ in the above analysis can be cal-

culated using the alternative STFTs to be presented in the following text.
Now, the discrete implementation of the STET can be presented based on the above analysis. Letting s½n� denotes the dis-

crete version of a time-series signal, n ¼ 0;1; :::N � 1, where N is the number of samples, and the data s½n� corresponds to a
uniform discretization of the signal taken at the time instant tn ¼ t0 þ nT , where T is the sampling interval. The Fourier trans-

form of data s½n� is calculated by S½k� ¼ PN�1

n¼0
s½n�e�i2pN nk, where k ¼ 0;1; :::N � 1. Letting G½n; k� Gsu½n; k�, Gsu

g0 ½n; k�, Gg0 ½n; k�, Gsu2 ½n; k�

and Gg00 ½n; k� denote the discrete version of the Gðt;xÞ Gsuðt;xÞ, Gsu
g0 ðt;xÞ, Gg0 ðt;xÞ, Gsu2 ðt;xÞ and Gg00 ðt;xÞ, these STFTs can

then be expressed as
G½n; k� ¼
XN�1

m¼0

g½m� n�s½m�e�i2pN mk: ð45Þ

Gsu½n; k� ¼
XN�1

m¼0

g½m� n�s½m�me�i2pN mk: ð46Þ

Gsu
g0 ½n; k� ¼

XN�1

m¼0

g0½m� n�s½m�me�i2pN mk: ð47Þ

Gg0 ½n; k� ¼
XN�1

m¼0

g0½m� n�s½m�e�i2pN mk: ð48Þ

Gsu2 ½n; k� ¼
XN�1

m¼0

g½m� n�s½m�m2e�i2pN mk: ð49Þ

Gg00 ½n; k� ¼
XN�1

m¼0

g0½m� n�s½m�e�i2pN mk: ð50Þ
With these STFTs, the discrete t̂½n; k�, @t t̂½n; k�, @x t̂½n; k�, x̂½n; k�, @tx̂½n; k� and @xx̂½n; k� can be obtained by
t̂½n; k� ¼ Re
Gsu½n; k�
G½n; k�

� �
: ð51Þ

@t t̂½n; k� ¼ Re
�nGsu

g0 ½n; k�G½n; k� þ Gsu½n; k�nGg0 ½n; k�
G½n; k�ð Þ2

 !
: ð52Þ

@x t̂½n; k� ¼ Re
�iGsu2 ½n; k�G½n; k� þ i Gsu½n; k�ð Þ2

G½n; k�ð Þ2
 !

: ð53Þ



10 G. Yu, T.R. Lin /Mechanical Systems and Signal Processing 147 (2021) 107069
x̂½n; k� ¼ Re �Gg0 ½n; k�
G½n; k�

 !
: ð54Þ

@tx̂½n; k� ¼ Re
Gg00 ½n; k�G½n; k� � ðGg0 ½n; k�Þ2

ðG½n; k�Þ2
 !

: ð55Þ

@xx̂½n; k� ¼ Re
iGsu

g0 ½n; k�G½n; k� � iGg0 ½n; k�Gsu½n; k�
ðG½n; k�Þ2

 !
: ð56Þ
Furthermore, the t̂
½2� ½n; k� and G½2�½n; k� can be calculated by
t̂
½2�½n; k� ¼ � @xx̂½n;k�

@tx̂½n;k�@x t̂½n;k� t̂½n; k� � n@t t̂½n; k�
� �

if @tx̂½n; k�@x t̂½n; k�


 

 > 1�10

t̂½n; k� otherwise

(
: ð57Þ

G½2�½n; k� ¼
G½n;k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�@t x̂½n;k�@x t̂½n;k�
@xx̂½n;k� �i@xx̂½n;k�

q if @tx̂½n; k�@x t̂½n; k�


 

 > 1�10

G½n; k� otherwise

8><
>: : ð58Þ
Eventually, the STET result can be obtained as
Te½2�½n; k� ¼ G½2�½n; k� ; if n� t̂½2�½n; k�

 

 < T
2

0 ; otherwise

(
: ð59Þ
4. Numerical signal analysis

In this section, the performance of the proposed STET in dealing with noise contaminated signals is examined. A defect
signal with impulse components as described in Ref. [30,31] is used in this simulation:
sðtÞ ¼
XK
k¼1

e
�f0ffiffiffiffiffiffiffiffi
1�f20

p ½2pf 0ðt�Tk�s0Þ�2
cosð2pf 0ðt � Tk � s0ÞÞ ð60Þ
where K ¼ 12, damping ratio f0 ¼ 0:002, central frequencyf 0 ¼ 300, time index s0 ¼ 0:01. The time-shift variable consider-
ing a random slip Tk ¼ 0:1ðkþ 0:05� DTÞ where DT is a random value between 0 and 1. The time waveform and the STFT
result of the signal are plotted in Fig. 4(a-b). The STET result and the zoomed version are shown in Fig. 4(c-d). It is obvious
Fig. 4. (a) The time waveform of the signal given in Eq. (60), (b) STFT result, (c) STET result and (d) the zoomed version of the STET result.



Fig. 5. (a) The slice of the STFT result at 300 Hz and (b) the slice of the STET result at 300 Hz.
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from the figure that the TFR generated by STET has a much higher energy concentration than that of STFT. Considering that
the central frequency of the simulated signal is 300 Hz, the slices of the TFRs from STFT and STET at 300 Hz, i.e.
Gðt;xÞj jx¼2p300Hz and Teðt;xÞj jx¼2p300Hz (the red color lines) are plotted in Fig. 5 together with the time waveform of the orig-
inally simulated signal (the blue color lines) for comparison. It is shown that the slice of the STET result at 300 Hz is highly
concentrated and can exactly indicate the occurrence time instant of each impulse component. This property is very helpful
in practice for accurately identifying the occurrence when a rolling element strikes the fault position of a bearing system.

In the following analysis, a Gaussian white noise is added onto the signal given in Eq. (60) and the waveform is plotted in
Fig. 6(a). The STFT and STET results are shown in Fig. 6(b-d). It is observed that STET can still provide a good TFR in the pres-
ence of the noise interference. The slices of the STFT and STET results are plotted in Fig. 7 to further exemplify the perfor-
mance of the STET in the analysis of noise contaminated signals. For sake of comparison, the TFRs generated byWT, RM, TSST
and high-order SST from the same noise-added signal are shown in Fig. 8. It is worth noting that the Gaussian window func-
tion is used in all of these transforms. The slices of these four TFRs at 300 Hz are plotted in Fig. 9 together with the original
Fig. 6. (a) The waveform of the noise added signal, (b) STFT result, (c) STET result and (d) the zoomed version of the STET result.



Fig. 7. (a) The slice of the STFT result at 300 Hz and (b) the slice of the STET result at 300 Hz.

Fig. 8. (a) WT result, (b) RM result, (c) TSST result and (d) high-order SST result.
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simulated signal. It is shown that the performance of the four TFA techniques is secondary comparing to that of the proposed
STET technique.

To further exemplify the benefit of the proposed technique, bilinear transform techniques such as Wigner-Ville distribu-
tion (WVD), smoothed pseudo WVD (SPWVD), interference-reduced distribution with Bessel kernel (IRD-BK) and



Fig. 9. The slices of (a) WT result, (b) RM result, (c) TSST result and (d) high-order SST result.

Fig. 10. The TFR of the noise added signal using (a) WVD, (b) SPWVD, (c) IRD-BK and (d) IRD-TK.
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interference-reduced distribution with triangular kernel (IRD-TK) are also employed in the analysis of the noise-added signal
and the TFA results are shown in Fig. 10 for comparison. It is shown that WVD will produce a strong interference in the TFR
due to the cross-terms in the transform. The interference is largely suppressed using SPWVD, though somewhat it also leads
to blurry TF energy distribution. Both IRD-BK and IRD-TK algorithms can enhance the energy concentration comparing to



Fig. 11. Rényi entropy of different TFA methods for signals having different SNR levels.
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that of SPWVD, though the added noise during the analysis process also hinders the characterization of impulsive-like fea-
tures in the analysis of the noise-added signal (60).

The performance of the TFA methods in the analysis of the noise contaminated signal having various SNR levels is quan-
titatively compared using the Rényi entropy as shown in Fig. 11 where a lower Rényi entropy value denotes a more concen-
trated TFR. The Rényi entropy of order a for a TFR is defined as,
Table 2
A comp

Algo

Time
Ra ¼ 1
1� a

log2

R R
TFRðt;xÞadtdxR R
TFRðt;xÞdtdx ð61Þ
where the order is usually set at a ¼ 3. It is shown that the proposed STET algorithm can achieve the most energy concen-
trated TFR for the simulated impulsive-like signal for all SNR levels.

The computer execution time of different TFA algorithms are listed in Table 2 to further evaluate the computation effi-
ciency of the proposed algorithm in the analysis of the noise-added signal. It is shown that the executive time of the pro-
posed STET is in the same scale to that of other TFA algorithms though the TFR energy concentration of the signal using
the proposed technique is much higher than that of other TFA techniques.

The proposed STET algorithm is very sensitive to the impulse features contained in the signal. To verify this remark, two
noise added signals are analyzed below where the kurtosis value, a widely accepted indicator in bearing fault diagnosis is
used to demonstrate the effectiveness of the proposed technique to accurately extract the impulse components from signals
containing various levels of noise interference. A random noise shown in Fig. 12(a) is used in this analysis. The sampling fre-
quency of the signal is 1024 Hz and the sampling time is 1 s. The TFRs of the signal produced by STFT and the proposed algo-
rithm are shown in Fig. 12(b-c) for comparison. It is shown that the TF features of the noise signal using STFT are widely
spread in the entire TF plane. On the contrary, a highly energy concentrated impulse feature can be obtained using the pro-
posed algorithm. Fig. 12(d) shows the reconstructed signal originated from the proposed algorithm. The calculated kurtosis
values of the signals depicted by Fig. 12(a) and 12 (d) are 0.3037 and 6.9983 respectively. The result confirms that the pro-
posed algorithm can substantially enhance the impulse features of a noise signal for a more accurate fault detection.

To further illustrate the effectiveness of the proposed algorithm in the analysis of noise contaminated signals, the tech-
nique is applied to analyze a noise added signal having two harmonic components shown in Fig. 13(a). The TFRs of the signal
produced by STFT and the proposed algorithm are shown in Fig. 13(b-c). Fig. 13(d) shows the corresponding reconstructed
signal originated from the proposed algorithm. The calculated kurtosis values of the signals shown in Fig. 13(a) and 13(d) are
0.1513 and 13.8881 respectively. The result confirms that the proposed algorithm can also be effectively employed to extract
the impulse features from a non-impulsive signal.

Moreover, the change of the kurtosis value of the reconstructed signal from STET for the two-component signal under the
influence of added noise with various SNR levels is shown in Fig. 14 together with that of the original noise added signal. It is
shown that the reconstructed signal originated from the proposed analysis has much higher kurtosis value than that of the
arison of the computer execution time using different algorithms.

rithm STFT TET TSST STET RM WT High-order SST

(s) 0.069 0.245 0.829 0.58 0.423 0.483 2.45



Fig. 12. (a) The waveform of a random noise signal, (b) STFT result, (c) STET result and (d) the reconstructed signal using STET.

Fig. 13. (a) The waveform of the noise added harmonic signal, (b) STFT result, (c) STET result and (d) the reconstructed signal using STET.
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original regardless of the SNR level, this implies the proposed technique can be effectively employed in dealing with signals
having harmonic components and contaminated by strong noise.
5. Experimental validations

5.1. A bearing outer race fault of a rotating machine

Fig. 15 shows the bearing test rig used by Case Western Reserve University for simulated bearing fault experiments,
which consists of an electric motor, a torque transducer and a dynamometer [32]. An artificial bearing outer race fault is sim-



Fig. 14. A comparison of the kurtosis value of the reconstructed signal from STET and the original noise-added signal having various SNRs.

Fig. 15. The structural sketch of the machine.
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ulated using the electro-discharge machine. Vibration signal is acquired by accelerometers placed at the drive end of the
motor housing. Fig. 16(a) shows the waveform of the vibration signal. The shaft rotating speed of the machine is
1772 rpm. According to the bearing parameters provided by the manufacturer, the ball passing frequency of the bearing
outer race is 105.877 Hz and the time interval between two successive impulses is 9.4 ms. It is seen from Fig. 16(a) that
the time waveform of this signal exhibits the impulse feature caused by the bearing fault. However, it is difficult to deter-
Fig. 16. (a) The time waveform of the bearing defect signal, (b) STET result and (c) the slice of the STET result.



Fig. 17. (a) STFT result, (b) TSST result, (c) RM result and (d) high-order SST result.

Fig. 18. The slices of the (a) STFT result, (b) TSST result, (c) RM result and (d) high-order SST result.
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Fig. 19. The structural sketch of the machine.
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mine the exact time instant when the impulse occurs from the time waveform. To address this problem, STET is used to
extract the TF feature from this vibration signal as shown in Fig. 16(b). Fig. 16(c) shows the slice (the red color line) of
the STET result at the frequency point 3336 Hz together with the original vibration signal (the blue color line). It can be
observed that the slice can accurately capture the exact time instant of the occurrence of the impulses in the signal. The time
interval captured by the STET analysis also matches well with the theoretical value. For comparison, this vibration signal is
also analyzed by STFT, TSST, RM and high-order SST and the results are shown in Fig. 17. It is shown that none of them can
Fig. 20. (a) The RF, (b) waveform of the vibration signal, (c) STET result during 0.15 s–0.19 s, (d) STET result during 2.39 s–2.43, (e) the slice of the STET
result and (f) the slice of the STET result.



Fig. 21. (a) A schematic illustration of the test rig, (b) a graphical illustration of the test rig.
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produce a highly concentrated TFR similar to that of the STET. Moreover, Fig. 18 shows that the slices of these TFRs cannot
capture the exact time instant for the impulse component in the signal.

5.2. A bearing outer race fault of a rotating machine under varying operation speed

In this section, a bearing defect signal under varying speed condition is analyzed to further exemplify the effectiveness of
the proposed technique. The signal is acquired from a machine test rig as shown in Fig. 19. The tested bearing is a type SKF
6205 bearing where an artificial fault is seeded in the outer race by wire cutting. An accelerometer is mounted on the bearing
housing in the experiment. The normalized fault characteristic frequency (FCF) of the outer race with respect to the rotating
frequency (RF) of this bearing is 3.583. The shaft RF decreases from 46 Hz to 30.7 Hz within 3 s during the test. The measured
RF profile and the corresponding vibration signal are plotted in Fig. 20(a-b). STET is used to analyze two 40 ms signal seg-
ments (respectively, 0.15 s–0.19 s and 2.39 s–2.43 s) of the vibration signal and the TFRs are shown in Fig. 20(c-d). The TFRs
display seven impulses and five impulses for the two signal 40 ms segments which highlights the speed varying condition of
the machine. To accurately determine the fault type, the slices of the two TFRs are plotted in Fig. 20(e-f). From Fig. 20(a), the
instantaneous values of the RF at 0.17 s and 2.41 s are found to be 45 Hz and 31 Hz respectively. The FCFs at these two time
instants are 111.1 Hz and 161.28 Hz and the corresponding intervals between two successive impulses should be 6.2 ms and
9 ms. It can be observed from the Fig. 20(e-f) that the time intervals characterized by the slices of these two TFRs match well
Fig. 22. (a) The waveform of the vibration signal, (b) STET result, (c) the zoomed version of the STET result and (d) the slice of the STET result.



Fig. 23. (a) STFT result, (b) TSST result, (c) RM result and (d) high-order SST result.
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with the theoretical values for both signal segments. This example highlights the effectiveness of the proposed technique in
fault diagnosis of bearings under varying speed condition.

5.3. A rub impact fault of a rotating machine

In this section, the proposed technique is employed to analyze the signal of a rub impact fault of a rotating machine [33].
The structural sketch of the machine test rig is shown in Fig. 21. The vibration of the test rig is acquired by a displacement
sensor, where the sampling frequency is 2560 Hz and the sampling time is 0.4 s. The shaft rotating speed during the exper-
iment is 2295 rpm, which corresponds to the RF of 38.25 Hz. The rub impact is introduced by tightening the screw above the
rotor. The time waveform of the vibration signal is shown in Fig. 22(a), which reveals limit fault information. STET is then
employed to analyze this signal and the TFR is shown in Fig. 22(b-c). It is shown that impulse features can be clearly
observed within the frequency interval between 0 Hz�200 Hz. According to Refs. [34–41], the impulse caused by the rub
impact between the rotor and the screw should happen once for each rotation. Considering that the current RF is
38.25 Hz, which means that the interval between two successive impulses should be 26.1 ms. A slice of the TFR at the fre-
quency 82.5 Hz is plotted in Fig. 22(d). It is shown that the slice from the TFR using the proposed technique can precisely
capture the occurrence time instant of the rub impact between the rotor and the screw. This confirms that the proposed
technique can be employed to capture the impulse like signals generated by a rub impact. For comparison, the TFRs of
the rub impact signal using STFT, TSST, RM and high-order SST are shown in Fig. 23. It becomes obvious that these TFR tech-
niques cannot yield the accurate features and are difficult to extract the exact features required for the detection of the rub
impact fault.

6. Conclusion

A high resolution TFA method termed as STET was proposed in this paper in the analysis of the impulsive-like signals for
machine fault diagnosis. The proposed technique was developed based on a second-order frequency-varying model which
has the capacity to handle noise contaminated signals and non-stationary impulse signals from real-world applications. Both
the 2D GD estimate bias and the amplitude bias of STFT caused by the second-order model are rectified under the framework
of the STET. Moreover, a discrete algorithm is implemented in the study by calculating various alternative STFTs. The effec-
tiveness of the proposed STET technique was verified using a number of numerical simulated signals and three sets of exper-
imental data. The results confirm that the technique proposed in the study has the capacity to produce a highly energy-
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concentrated TFR even for strong frequency-varying signals under a strong noisy interference environment and varying
speed conditions. The analysis results from this study highlight the potential applications of the proposed technique in con-
dition monitoring and fault diagnosis of rotating machinery. A MATLAB implementation of the proposed algorithm is avail-
able at https://ww2.mathworks.cn/matlabcentral/fileexchange/77398.
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