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 

Abstract—In this paper, we introduce a new 
time-frequency (TF) analysis (TFA) method to study the 
trend and instantaneous frequency of non-linear and 
non-stationary data. Our proposed method is termed the 
synchroextracting transform (SET), which belongs to a 
post-processing procedure of the short-time Fourier 
transform (STFT). Compared with classical TFA methods, 
the proposed method can generate a more energy 
concentrated TF representation and allow for signal 
reconstruction.  

The proposed SET method is inspired by the recently 
proposed synchrosqueezing transform (SST) and the 
theory of the ideal TFA. To analyze a signal, it is important 
to obtain the time-varying information, such as the 
instantaneous frequency (IF) and instantaneous amplitude. 
The SST is to squeeze all TF coefficients into the IF 
trajectory. Differ from the squeezing manner of SST, the 
main idea of SET is to only retain the TF information of 
STFT results most related to time-varying features of the 
signal and to remove most smeared TF energy, such that 
the energy concentration of the novel TF representation 
can be enhanced greatly. Numerical and real-world signals 
are employed to validate the effectiveness of the SET 
method. 

Index Terms—Time-frequency analysis, 
synchrosqueezing transform, synchroextracting 
transform.  

I. INTRODUCTION 

he time-frequency (TF) analysis (TFA) method is an 
effective tool to characterize the time-varying features of 

non-stationary signals, which can help us to understand this 
non-stationary world more clearly [1], [2]. The TFA method 
has been developed over many years, and classical TFA 
methods include the short-time Fourier transform (STFT), 
wavelet transform and Wigner-Ville distribution [3]. However, 
restricted by the Heisenberg uncertainty principle or 
unexpected cross-terms, the classical methods suffer from low 
TF resolution, which leads to them not being able to 
characterize the non-linear behaviors of non-stationary signals 
precisely. Recently, some advanced post-processing methods 
have been proposed, such as the reassignment method (RS) [4], 
[5], synchrosqueezing transform (SST) [6]-[8], parametric TFA 
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(PTFA) method [9]-[12] and demodulated TFA (DTFA) 
method [7], [13]. Generally, each of the proposed methods is 
towards to resolve one question, i.e., how to improve the TF 
resolution as high as possible. The eventual goal is to achieve 
the ideal TFA (ITFA) [14] as 

 ( , ) ( ) ( '( ))ITFA t A t t       (1) 

which is based on a non-stationary signal model as 

 ( )( ) ( ) i ts t A t e    (2) 

where ( )A t  is the instantaneous amplitude (IA), ( )t  denotes 

the instantaneous phase and its one-order derivative '( )t  is 

the instantaneous frequency (IF). The expression (1) denotes 
that the signal energy of ITFA should only appear in the IF 
trajectory. For a mono-component signal, the phase can be 
obtained by the Hilbert transform, but it will fail to tackle 
multi-component signals. A multi-component signal can be 
modeled as 
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whose ITFA is represented as 
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

    (4) 

According to (4), the ITFA of a multi-component signal is 
the superposition of ITFA of each mono-component, and it is 
suggested to be decomposed firstly [15], [16]. 

RS [4] and SST [6], [8] were developed as post-processing 
tools and have the ability to reassign or squeeze the TF 
coefficients by classical TFA methods into the IF trajectory, 
which are approximated to the ITFA representation. In theory, 
RS and SST share a similar post-processing manner. RS 
reassigns the TF spectrogram into the IF trajectory along the 
two-dimensional TF direction, and the SST squeezes the TF 
coefficients into the IF trajectory only in the frequency 
direction. Thus, RS can achieve a high TF resolution but cannot 
allow for signal reconstruction. SST can reconstruct the 
interested signals but suffers from a lower TF resolution. 

PTFA [9]-[11] and DTFA [7], [13] methods are designed to 
improve the energy concentration of the TF result by 
demodulating the time-varying signal based on an extended 
parametric math model, such as a polynomial model or Fourier 
model. The demodulated procedure is iterative so that the TF 
energy concentration can be improved step by step. In this 
process, how to select the appropriate math model and how to 
tackle the multi-component signal are challenging and hard to 
solve [10]. Although the energy of PTFA or DTFA results is 
well-concentrated, the TF result has to be restricted by the 
Heisenberg uncertainty principle because it is also based on an 
inner product operator with the TF basis function. 
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In this paper, inspired by the SST method and ITFA theory, 
we propose a novel TFA method that can generate more 
energy-concentrated TF results than the RS, SST, PTFA and 
DTFA methods. Simultaneously, it allows for reconstructing 
the interested components. The rest of this paper is organized as 
follows. Section II details the theory of our proposed method. 
In Section III, two numerical signals are employed to illustrate 
the quantified comparison of TF results generated by different 
TFA methods. Experimental validations are provided in 
Section IV, and conclusions are drawn in Section V. 

II. SYNCHROEXTRACTING TRANSFORM 

A. The theory 

We begin this study with STFT. The STFT expression of a 

function 2 ( )s L   with respect to the real and even window 
2 ( )g L   is defined as 

 ( , ) ( ) ( ) i uG t g u t s u e du





     (5) 

where ( )g u t  denotes the moved window and ( )s u  is the 

analyzed signal. The STFT expands a one-dimensional 
time-series signal into the two-dimensional time-frequency 
plane so that we can observe and extract the IA and IF 
information of the signal. However, in the time and frequency 
domain, the window function is of bandwidth, which results in 

an energy-blurred spectrogram ( , )G t  . To explore the energy 

distribution of the STFT result, we first let 

( ) ( ) i ug u g u t e 
    . According to the Parseval’s theorem, 

the STFT can be written as 
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where ()*  denotes complex conjugation, ( )s   is the Fourier 

transform (FT) of ( )s u , ( )g   is the FT of ( )g u , and 

*g g (the window g  is real). Consider ( )g   to be 

calculated by 

 ( ) ( ) .i u i ug g u t e e du 
 





     (7) 

Letting 'u t t  , we then have 
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where ˆ ( )g    is the FT of the window function. Then, 

substituting (8) into (6), we can obtain 
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 (9) 

When the regular STFT expression considers an additional 

phase shift i te  as 

 ( )( , ) ( ) ( ) .i u t
eG t g u t s u e du


 


     (10) 

Then the modified STFT (10) can be rewritten as 

 
1

ˆ ˆ( , ) ( ) ( ) .
2

i t
eG t g s e d    






     (11) 

Herein, we employ the model of a purely harmonic signal 

(the frequency is 0 ) with invariant amplitude ( A ) as 

 0( ) .i t
hs t A e    (12) 

Due to the FT of ( )hs t , 

 0
ˆ( ) 2 ( ).s A        (13) 

Substituting (13) into (11), we can obtain the STFT of ( )hs t , 

 0

0
ˆ( , ) ( ) .i t

eG t A g e        (14) 

According to (14), we have the following properties: (a) The 
STFT representation of the harmonic signal is constituted by a 

series of harmonic signals with the same frequency 0 , which is 

consistent with the original signal ( )hs t . (b) Due to 0| | 1i te    

and ˆ ()g  being compact, the energy of the TF representation 

concentrates on the frequency 0  , and in this frequency 

region, the TF representation has the maximum amplitude, 

which is equal to ˆ (0)A g . 

 

Fig.1. (a) The spectrogram ( , )eG t  , (b) the spectrogram at 0 =1t s , i.e. 

0( , )eG t  . 

Herein, we employ a numerical signal ( ( ) cos(2 25 )s t t  , 

with a frequency of 25Hz and amplitude of 1) to conduct the 
above analysis and the following study. Fig. 1(a) shows the 
spectrogram. We can see that the TF energy is concentrated 

on 0 =25Hz . Now, we take the slice of the spectrogram 

at 0 1t s , i.e., 0( , )eG t  , as shown in Fig. 1(b), where   

denotes the frequency support of the window function. It can be 

seen that the TF energy spreads in the region  0 0,    
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and reaches the maximum in the frequency 0 . However, 

based on the energy-blurred result, it is impossible to 
characterize the time-varying feature of a signal precisely. 

The SST method is designed to improve the energy 
concentration by a squeezing procedure. The relative theory is 
based on the usually-ignored IF information of the STFT. To 
obtain the IF of the STFT result (14), it is first suggested to 

calculate the derivative of ( , )eG t   with respect to time as 
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The expression (15) leads to (16): for any ( , )t   and for 

which ( , ) 0eG t   , a two-dimensional IF 0 ( , )t   for the 

STFT result (14) can be obtained by 

 0
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( , )
t e

e

G t
t i

G t


 




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The expression (16) illustrates one factor: in the 

two-dimensional TF plane, if ( , )eG t   is not zero, the IF of the 

STFT coefficients should always be equal to 0 . In Fig. 2(a), 

the IF 0 ( , )t   is displayed, and the 0 ( , )t   at the time 

0 1t s  is listed as shown in Fig. 2(b). It can be seen that, in the 

TF region  0 0,     , the value is always equal to 

the signal frequency 0 . 

 

Fig.2. (a) The IF 0 ( , )t  , (b) the IF at 0 =1t s , i.e. 0 0( , )t  . 

In the framework of SST, the IF 0 ( , )t   is used to gather 

the STFT coefficients that have the same frequency to where 
they should appear, which is called as synchrosqueezing. The 
gathering manner can be understood in Fig. 3(a) more clearly. 
In mathematics, the synchrosqueezing operator is written as 

0( ( , ))t d    



 , and the synchrosqueezing transform is 

formulated as 

 0( , ) ( , ) ( ( , )) .eTs t G t t d      



    (17) 

By this post-processing procedure, we can obtain a sharper 
TF representation than the original STFT, as shown in Fig. 3(b). 
As a benefit of the reconstruction ability, the mono-component 
modes can be recovered from the SST result to a highly precise 
degree [6]. 

 

Fig.3. (a) The gathering manner of operator 0( ( , ))t d    



 , (b) the 

SST result ( , )Ts t  . 

In the framework of the SST method, all the TF coefficients 

from the original TF plane ( , )t   are squeezed into the IF 

region 0   of a new TF plane ( , )t  . However, in practical 

cases, most signals contain noise, and the random noise may 
spread out over the entire TF plane. In the synchrosqueezing 
processing of TF coefficients, the unexpected noise has to be 
gathered into the SST result, which will result in bad noise 
robustness. According to (14), the original TF representation 

( , )eG t   can achieve the maximum value in the IF trajectory, 

and the TF coefficient 0( , )eG t   should have the best noise 

robustness. Thus, we are motivated to generate a novel TF 
representation only using the TF coefficient in the IF trajectory 

0   as in (18). 

 0( , ) ( , ) ( ( , )).eTe t G t t         (18) 

Observing (1) and (18), the proposed expression (18) can be 
regarded as using the amplitude and IF information of the STFT 
result to substitute the amplitude and IF of the ITFA, i.e., 

( , ) ( )eG t A t   and 0 ( , ) '( )t t   .  Therefore, (18) is an 

effort to achieve the ITFA. According to the framework of the 
ITFA (1), in a TF plane, the signal energy of the ideal TF 

representation should only appear in '( )t  . Reconsidering 

(18), the operator 0( ( , ))t     can be interpreted as 
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Therefore, 0( ( , ))t     can be regarded as a novel TF 

representation of binarization in the TF plane, as shown in Fig. 
4. 

 

Fig.4. (a) The operator 0( ( , ))t    , (b) the operator at 0=1t s , i.e. 

0 0( ( , ))t    . 
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From the above analysis, we see that the operator 

0( ( , ))t     can provide us with the following capability, 
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In theory, the operator 0( ( , ))t     extracts the TF 

coefficient of ( , )eG t   only in the IF trajectory 0  , and the 

rest of the TF coefficients are removed. This post-processing 
manner can be understood in Fig. 5(a) more clearly. It shows 
that most TF coefficients are removed and only the TF 

coefficient 0( , )eG t   is retained. By this extraction method, the 

novel TF representation ( , )Te t   (see Fig. 5(b)) can be more 

energy-concentrated than the original STFT result, and the TF 
resolution can be highly improved. Compared with the SST 
gathering all coefficients, the proposed method only utilizes the 
TF coefficient having maximum value to generate a novel TF 
representation, such that the effect of noises on the TF result 
can be minimized. Different from the squeezing manner of the 
SST method, the proposed method having extracting manner 
(18) is named the synchroextracting transform (SET) and 

0( ( , ))t     is called the synchroextracting operator (SEO). 

 

Fig. 5. (a) The extracting manner of operator 0( ( , ))t     (the black 

solid point denotes the retained TF coefficient 0( , )eG t  , and the dotted 

line denotes the removed TF coefficients). (b) the SET result ( , )Te t  . 

In discrete data processing, the partial derivative is 
commonly implemented approximately by a finite difference 
operator, i.e. 

 ( , ) ( ( , ) ( , )) / .t e e eG t G t t G t t         (21) 

For more precise parameter estimation, ( , )t eG t  can also 

be calculated by (22). 
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where 'g  is the derivative of the window function with respect 

to time. Then, substituting (22) into (16), 0 ( , )t   can be 

obtained by (23). 
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Such that the SEO can be rewritten as (24). 
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According to the Dirac function () , the SEO should be 

calculated by (25). 
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However, considering the calculation error and that the 
SEO’s real part needs to be utilized in practical applications [6], 
[17], it is suggested that (25) be rewritten as (26). 
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where 1= l l      is the discrete frequency interval and 

 Re   denotes taking the real part. 

B. Multi-component signal processing and mode 
decomposition 

In practice, it is often found that a measured signal is the 
superposition of several modes produced by distinct excitation 
sources. Each mode is an effective way to study the natural 
phenomena using their individually intrinsic behaviors. How to 
decompose a multi-component signal into the 
mono-component modes is another important application of the 
TFA method [18], [19]. For a signal such as (3), if the different 
modes are separated by sufficient distance, i.e., 

 1' ( ) ' ( ) 2k kt t      (27) 

where  1,..., 1k n  , then each mono-component mode can 

be separated or reconstructed from the TF representation. With 

the assumptions that '   small, ' ( )kA t   and '' ( ) 'k t   

for t , the STFT of signal (3) can be represented in the 

following first-order approximation form (28) [18], [20]. 
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For a well-separated multi-component signal, the expression 
(16) can also work for estimating the IF of each mode 
effectively [6], [17], which is calculated by 
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'( , )= ' ( , ) .

( , )

n
t e

k
k e

G t
t t i

G t


   
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
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In this case, the SET expression should be written as 

 ( , ) ( , ) ( '( , )).eTe t G t t         (30) 

A numerical signal consisting of several time-varying modes 
borrowed from [19] is analyzed, and the relative analysis 
results are shown in Fig. 6. In Fig. 6(a), each mode occupies 



0278-0046 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2017.2696503, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 5 

distinct domains of the TF plane, and the corresponding energy 
spreads around their IF trajectories. Under the satisfaction of 
the separation condition (27), the estimated IF (see Fig. 6(b)) is 
equal to the superposition of individually estimated IFs of each 
mode. Furthermore, the SEO and SET results (see Fig. 6(c-d)) 
can be obtained just like dealing with the mono-component 
signal. 

 

Fig.6. The relative analysis results of a numerical signal in [19], (a) the 

spectrogram ( , )G t  , (b) the IF '( , )t  , (c)the SEO ( '( , ))t     and 

(d) the SET result ( , )Te t  . 

According to (28) and (30), we can deduce the following 
expression 
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Therefore, signal (3) can be reconstructed approximately by 
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
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And each mode admits the following decomposition form 
(33) in a first-order approximation manner [18], [20]. 

 ˆ( ) ( , ' ( )) / (0).k ks t Te t t g  (33) 

Herein, to compare the difference between the proposed SET 
and the SST, we also review the signal reconstruction or mode 
decomposition approach of the SST method. For the STFT (10), 
if we calculate the integral in the frequency direction, we can 
deduce the following expression (34): 
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Therefore, the original signal ( )s t  can be reconstructed by 
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According to (28), when the separation condition (27) is 
satisfied, different modes occupy their own TF domain without 
interference. To decompose each mode in the time domain, we 
can integrate the TF coefficients in only the frequency direction 
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Because the SST only considers the squeezing of TF 
coefficients in the frequency direction, that can be regarded as 
the integral calculation in the frequency direction, and the 
reconstruction expression of the SST is similar to that of STFT, 
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From (37), we know that, to reconstruct a mode, the SST 
integrates the TF coefficients around the IF of each mode. 

However, the integration region [ ' ( ) , ' ( ) ]k kt ds t ds      

is hard to determine in practice, and different integration 
regions may yield distinct reconstructed results [8]. According 
to the expression (33) and expression (37), to decompose a 
mono-component mode, both of SET and SST need to know the 
IF trajectories. However, apart from the parameter of IF 
trajectories, the SST has to know the integration regions 
additionally. Compared with SST, the SET reconstruction is 
more convenient and straight-forward. 

III. NUMERICAL VALIDATION 

To explore the performance of the proposed SET method 
comprehensively, we consider the following quantified 
indicators to illustrate its effectiveness, including the Rényi 
entropy of the TF representation, the ability of signal 
reconstruction and the required time for computation analysis. 
The comparison is made between various classical and 
advanced TFA methods, such as the STFT, SST, RS, PTFA and 
DTFA. To make the comparisons objective, we have written 
the code of all the above TFA methods in MATLAB, and the 
window function used in these methods is unified as a Gaussian 
window (38), since the Gaussian window function has the 
minimal area of the Heisenberg box. 

 
2 2/0.32( ) .tg t e    (38) 

In the processing of numerical signals and real-world signals, 
the comparisons are made between the proposed SET and the 
other TFA methods, such as the STFT, SST, RS, PTFA and 
DTFA. Because all the above-mentioned methods need to make 
use of a Gaussian window function, the window sizes applied in 
these Sections are listed in Table I. In discrete data processing, 

the time-shift of the window function ( )g t  is one sampling 

interval, and therefore the window overlap should be equal to 
the window length minus the sampling interval. 

TABLE I 
THE WINDOW SIZES 

TFA Section III.A Section III.B Section IV.A Section IV.B 

STFT 0.4s 0.49s 0.315ms 0.025s 

SST 0.4s 0. 49s 0.315ms 0.025s 

RS 0.4s 0. 49s 0.315ms 0.025s 

SET 0.4s 0. 49s 0.315ms 0.025s 

PTFA 1.5s 2.92s 1.05ms 0.09s 

DTFA 1.5s 2.92s 1.05ms 0.09s 
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A. A mono-component signal 

A frequency-modulated (FM) and amplitude-modulated 
(AM) signal is selected first to illustrate the comparison, and it 
is modeled as 

 0.5( ) sin(2 (25 10 sin(1.5 )))ts t e t t         (39) 

whose sampling frequency is 100Hz and sampling time is 4s. 
According to signal expression (39), the IF and IA trajectories 
are drawn in Fig. 7(a-b), and the corresponding ITFA 
representation is generated in Fig. 7(c-d). The ITFA 
representation demonstrates the fact that, in each time interval, 
only one frequency bin appears to describe this 
mono-component signal in the TF plane. 

The TF representation in Fig. 8(a) results from the STFT, 
which suffers from a poor TF resolution. In Fig. 8(b), the SEO 
is displayed. It can be seen that, the SEO is a TF representation 
that is independent of the signal amplitude, and it is a good 
approximation of the signal IF. Utilizing the STFT result and 
SEO result, we can obtain the SET representation (see Fig. 
8(c-d)), which shows an obviously higher energy concentration 
than the STFT. 

 

Fig. 7. (a) The IF trajectory, (b) the IA trajectory, (c) the ITFA 
representation and (d) the corresponding zoom of the ITFA. 

 

Fig. 8.  (a) STFT result, (b) SEO, (c) SET result and (d) zoom of the SET 
result. 

For comparison, we list the TF representation generated by 

the SST, RS, (see Fig. 9) PTFA and DTFA methods (see Fig. 
10). Both provide more energy-concentrated TF results than the 
STFT. In 0.8 s ~ 1.2 s, the signal has a rapidly decreasing FM 
law. As shown in the zoom of the SST result, it is blurry, since 
the SST squeezes the TF coefficients only in the frequency 
direction. However, the RS reassigns the TF spectrogram in the 
two-dimensional TF direction such that the corresponding TF 
result is more concentrated. 

The PTFA and DTFA methods are iterative algorithms, and 
the TF results are generated step by step. Herein, we only list 
the TF results of the last step, as shown in Fig. 10, where the 
polynomial model is selected as the parameter input. The 
superiority of the PTFA and DTFA methods comes from the 
use of the non-linear TF basis function, such that the generated 
results are more concentrated than the STFT result. However, 
the use of the inner product must be restricted by the 
Heisenberg uncertainty principle, such that the best time 
resolution and frequency resolution cannot be simultaneously 
achieved. 

 

Fig. 9.  (a) SST result, (b) zoom of the SST result (c) RS result and (d) 
zoom of the RS result. 

 
Fig. 10.  (a) PTFA result, (b) zoom of the PTFA result (c) DTFA result 
and (d) zoom of the DTFA result. 

The more energy-concentrated TF result denotes the better 
ability of the TF location and the better characterization of the 
time-varying feature. The Rényi entropy is an objective 
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indicator to evaluate the energy concentration of a TF result. 
Therefore, the Rényi entropy is employed to evaluate the 
performance of different methods quantitatively, and a lower 
Rényi entropy value denotes a more energy-concentrated TF 
representation. The corresponding Rényi entropies are listed in 
Table II. It can be seen that, the SET result has the lowest Rényi 
entropy, which denotes that it can generate the most 
energy-concentrated TF representation. Just from the visual 
representation, the SET result is the closest to the ITFA 
representation among all the TFA methods. 

TABLE II 
RÉNYI ENTROPY 

TFA STFT PTFA DTFA SST RS SET 

Rényi 
Entropy 

13.5859 11.9333 11.9510 9.6191 8.8601 8.3261 

Both the SET and SST allow for signal reconstruction, so it is 
necessary to test the ability of signal recovery under different 
level noises. The white noises with SNRs (signal to noise ratio) 
of 1 dB to 30 dB are added to the signal (39). For the SET 
reconstruction expression (33), to recover a signal, it needs one 

parameter ' ( )k t , i.e., the IF trajectory corresponding to each 

mode. For the mono-component signal, the IF trajectory can be 
estimated by the maximum value detection method directly, i.e., 

'( ) arg max | ( , ) |t TFR t


  , where ( , )TFR t   denotes the TF 

representation to be analyzed. For the SST reconstruction 

expression (37), apart from the parameter ' ( )k t , it needs to 

know the integration parameter ds . For the strong FM signal, 

the SST result smears heavily [21]. To recover the original 
signal, a more smeared TF representation means that more TF 
coefficients are needed. Therefore, the parameter ds  cannot be 

given a certain value. Herein, we consider three different 
integration parameters, =5,10,15ds . The SNRs of the 

reconstructed results are calculated and listed in Fig. 11. It can 
be found that, for the SST reconstruction, more TF coefficients 
( =15ds ) yield more noise-robust results. In the low SNR case 

(1-15 dB), the SET has similar performance to that of the SST 
with =15ds . In the high SNR case (16-30 dB), restricted to the 

first-order approximation method, the SET cannot provide 
more accurate reconstruction results. Compared to the SST, 
because the SET reconstruction just needs to know the 

parameter ' ( )k t , it is more straight-forward and convenient. 

 

Fig. 11. Under different noise levels (SNRs of 1 dB-30 dB), the SNR of 
the reconstructed results by different TFA methods. 

The efficiency of a TFA method is important in real-time 
applications and decides whether or not the method can be used 
in practical engineering. Herein, we test the computational time 
required for the above-mentioned TFA methods, generating the 
TF representations in Figs. 8–10. The tested computer 

configuration is as follows: Intel Core i7-6500 2.5 GHz, 8.0 GB 
of DDR3 RAM, Windows 10 OS, and MATLAB version 
R2016a. The computation times required are listed in Table III. 
It can be seen that, the computational burden of the SET 
method is approximately twice that of the STFT method. That 

is because the SET method needs to calculate ( , )eG t   and 
' ( , )g

eG t   at the same time. 
TABLE III 

REQUIRED COMPUTATION TIME 

TFA STFT PTFA DTFA SST RS SET 

Time(s) 0.028 0.066 0.059 0.070 0.062 0.053 

B. A multi-component signal 

In this section, we consider a multi-component signal 
consisting of three modes. The sampling frequency is 120 Hz, 
and the sampling time is 4 s. The math model is written as 

 

1

2

2
3

( ) sin(2 (44 10 sin( )))

( ) sin(2 (32 10 sin( )))

( ) sin(2 (10 2 arctan((2 2) ))).

s t t t

s t t t

s t t t







    

    

      

 (40) 

The corresponding IF trajectory and ITFA representation are 

drawn in Fig. 12. It can be seen that the modes 1( )s t  and 2 ( )s t  

have the same FM law but distinct initial frequencies, and the 

mode 3 ( )s t  has an arc-tangent trend FM law. 

 

Fig. 12. (a) The IF trajectories and (b) the ITFA representation. 
To test the noise robustness of the proposed method, the 

signal (40) has the white noise added to it (the SNR is from 1 
dB to 30 dB). First, we focus on the Rényi entropies of the TF 
representations generated by different methods (see Fig. 13). It 
can be found that the increased noises enlarge the Rényi 
entropies, which means that the noise can deduce the energy 
concentration of these methods. The DTFA and PTFA methods 
provide almost the same results, which are less than the STFT 
but more than the SST and RS methods. Furthermore, it can be 
seen that, among all TFA methods, the SET results achieve the 
minimum in each noise level, which denotes that the SET has 
the best ability to improve the TF energy concentration. 

 

Fig. 13. Under different noise levels (SNR of 1 dB-30 dB), the Rényi 
entropies of the TF representations generated by different TFA 
methods. 
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Moreover, to explore the differences of the above TFA 
methods in dealing with multi-component signals, we list the 
corresponding TF representations in Fig.  14 (the signal’s SNR 
is equal to 6 dB). The time-varying feature in the STFT result 
(see Fig. 14(a)) is heavily affected by noises. Benefitting from 
the post-operation on the STFT representation, we can obtain 
the SST, RS and SET results (see Fig. 14(b-d)), whose TF 
energy concentration is enhanced greatly. 

 

Fig. 14.  (a) STFT result, (b) SST result, (c) RS result, (d) SET result, (e) 

PTFA result and (f) DTFA result by demodulating mode 1( )s t , (g) PTFA 

result and (h) DTFA result by demodulating mode 3 ( )s t . 

For the PTFA and DTFA methods, before dealing with the 
signal, it is necessary to select the appropriate parameter to 
demodulate the time-varying component based on a priori. 

First, the mode 1( )s t  with the polynomial FM law is considered 

as the component that is to be demodulated. Compared with the 
STFT result, although the PTFA and DTFA results (see Fig. 

14(e-f)) can provide better energy concentration for mode 1( )s t , 

the TF feature of mode 3 ( )s t  almost disappears. That is 

because the selected parameter can only demodulate the 
specified component and that with the same time-varying law, 

such as mode 2 ( )s t . However, the TF feature of mode 3 ( )s t  

with the distinct FM trend is even worse than that of the STFT 

result. Then, to make a comparison, mode 3 ( )s t  is considered 

as the component to be demodulated, and the processing results 

are shown in Fig. 14(g-h). It can be observed that mode 3 ( )s t  is 

characterized clearly, but the TF features of modes 1( )s t  and 

2 ( )s t  show poor energy concentration. Herein, we can 

conclude that the PTFA and DTFA methods are not suitable for 
processing the signal consisting of multiple components with 
distinct FM laws simultaneously. 

Regardless of whether it is for the SST or for the SET, to 
decompose the mono-component modes in a multi-component 
signal, the first step is to estimate the IF trajectories 
corresponding to each mode. However, the maximum value 
detection method only works for mono-component signals. To 
estimate all IF trajectories at the same time, a popular 
multi-ridge detection algorithm is employed [18], [20], [22]. 
Knowing the number K  of modes, this algorithm calculates 
the local minimum value of the function (41). 
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where 
1

( , ( ))
K

k
k

t t


  is the estimation of the IF trajectories in the 

TF plane, and     are two parameters to adjust the level of 

regularization. The signal (40) with different levels of noises 
(SNR=20 dB, SNR=3 dB) is analyzed, and the parameter are 
set as =3K . The SST and SET results and the estimated IF 

trajectories are displayed in Fig. 15 and Fig. 16, respectively. It 
can be observed that, for the high SNR level (see Fig. 15), both 
the SST and SET can provide clear TF representations to be 
analyzed, and the IF trajectories are estimated correctly. 
However, for the low SNR level (see Fig. 16(a)), the energy of 
the SST result smears heavily, and the time-varying features of 
the three modes are blurry visually. In Fig. 16(b), the estimated 
IF trajectories based on the SST result even overlap with each 
other. In Fig. 16(c-d), although the SET result is affected by 
noises, the IF trajectories corresponding to the three modes are 
still well-estimated. It can be concluded that, in the aspect of IF 
estimation, the SET result has better noise-robustness than the 
SST result. 

 

Fig. 15. The SNR added to the signal is equal to 20dB, (a) SST result, (b) 
the estimated IF trajectories, (c) SET result and (d) the estimated IF 
trajectories. 
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Fig. 16. The SNR added to the signal is equal to 3dB, (a) SST result, (b) 
the estimated IF trajectories, (c) SET result and (d) the estimated IF 
trajectories. 

Benefitting from the estimated IF trajectories, the three 
mono-component modes can be reconstructed. The 
reconstruction performance is evaluated by the SNR of the 
superposition of the three decomposed modes. Under the 
different level noises, the reconstruction results are shown in 
Fig. 17. For 1-5 dB, the SET has the best reconstruction 
performance since the IF trajectories can be estimated from the 
SET result more accurately than the SST result, especially in 
the low SNR case. For 6-20 dB, the SET and SST provide 
similar reconstruction results. For the much higher SNR case 
(21-30 dB), the SST ( =10 15ds ， ) can achieve much better 

signal reconstruction than the SET because the SET 
reconstruction is mainly restricted to the first-order 
approximation method in the high SNR case. Herein, we can 
conclude that, in the low SNR case, with the aid of better 
performance on IF estimation, the SET reconstruction is more 
robust to noise than the SST. 

 

Fig. 17. Under different noise levels (SNR of 1 dB-30 dB), the SNR of the 
reconstructed results by different TFA methods. 

IV. EXPERIMENTAL VALIDATION 

The SET is designed to analyze the AM-FM signal to help us 
understand this non-stationary world more clearly. In this 
section, we use two real-world signals to show the effectiveness 
of our proposed method. 

A. Bat Signal 

A popular bat signal recorded by Rice University is 
employed to be the first case to validate the proposed method 
[8], [19]. By producing the frequency-modulated and 

sweeping-downward signal, and collecting the echo-delay 
signal, the bats can identify the object successfully in the 
complex environment. This signal is sampled at 400 points and 
its sampling frequency is 140kHz. In Fig. 18, the waveform and 
the spectrum are displayed. However, just from the information 
in Fig. 18, it is hard to understand the non-linear behaviors of 
bat echolocation precisely. 

 

Fig. 18. The waveform of the bat signal and its spectrum. 

Compared with the one-dimensional analysis in the time 
domain or frequency domain, with the aid of TFA technology, 
the time-varying features can be expanded into the 
two-dimensional TF plane to provide more essential 
information. By the processing of the STFT, a TF 
representation is shown in Fig. 19(a). Although the energy of 
the STFT result smears heavily, the basic FM-AM features can 
be characterized generally. By means of improving the energy 
concentration, the SET method is proposed to acquire better TF 
location ability. In Fig. 19(b), the SEO representation shows the 
FM laws of all modes contained in the bat signal. Because the 
SEO result is independent of the signal amplitude, it is very 
helpful to determine the number of all modes and discover the 
amplitude-weak components. In Fig. 19(c-d), both the FM law 
and AM trend are contained in the SET result. The zoom on the 
SET result provides a visual comparison with other TFA 
methods through observation. Compared with the STFT, the 
SET provides an obviously sparser representation to describe 
this bat signal. 

 

Fig. 19.  (a) STFT result, (b) SEO, (c) SET result and (d) zoom of the 
SET result. 

For furthermore comparison, the analyzed results generated 
by the SST, RS, PTFA and DTFA methods are shown in Fig. 20 
and Fig. 21. The corresponding Rényi entropies are listed in 
Table IV. No matter from quantified Rényi entropies or through 
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observation, the analysis results show that the SET has the best 
ability to generate the most energy-concentrated TF 
representation among all TFA methods. 

 

Fig. 20.  (a) SST result, (b) zoom of SST result, (c) RS result and (d) 
zoom of RS result. 

 

Fig. 21. (a) PTFA result, (b) zoom of the PTFA result, (c) DTFA result 
and (d) zoom of the DTFA result. 

TABLE IV 
RÉNYI ENTROPY 

TFA STFT PTFA DTFA SST RS SET 

Rényi 
Entropy 

14.5456 13.3865 13.3511 10.1796 9.9599 9.4684 

 
To make sure that all mono-component modes can be 

well-decomposed, it is first necessary to know the number of 
modes in the signal. In Fig. 19(b), it can be observed that four 
FM trajectories are characterized, which should correspond to 
four modes. Therefore, for algorithm (41), the parameter are set 
as =4K . Based on the SET, SST, RS and DTFA results, the 
estimated IF trajectories are plotted in Fig. 22. It can be seen 
that the estimation based on the SET result gives the best 
description of the IF trajectories. In Fig. 22(b-c), the estimated 
IF trajectories based on the SST and RS results overlap with 
each other partially. The DTFA result fails to provide useful 
information regarding the FM laws. In the processing of this bat 
signal, regardless of whether it improves the energy 

concentration or detects time-varying features, the proposed 
SET method has the best performance among the 
above-mentioned TFA methods. 

 

Fig. 22. The estimated IF trajectories based on (a) the SET result, (b) 
SST result, (c) RS result and (d) DTFA result. 

Utilizing the IF trajectories estimated by the SET result, the 
mono-component modes can be decomposed effectively. The 
four decomposed modes are shown in Fig. 23. In Fig. 23(e), we 
list the summation of four components and the original bat 
signal (the black solid line is the original signal and the red 
dotted line is the summation of the four decomposed 
components). Their errors are plotted in Fig. 23(f). It can be 
seen that, the reconstruction errors are small compared to the 
original signal, which denotes that the proposed method has 
good invertible ability. 

 
Fig. 23. (a-d) Four decomposed mono-component modes, (e) 
summation of the four modes (red) and the original signal (black), (f) 
reconstruction errors between the summation and the original signal. 

B. Fault Vibration Signal 

In this section, we focus on an abnormal vibration of a heavy 
oil catalytic machine set [13], whose structural sketch is shown 
in Fig. 24. It consists of a gas turbine, compressor, gearbox, and 
motor. The bearing cases (1#, 2#, 3# and 4#) are used to support 
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the corresponding shaft. The rotation speed of the gas turbo is 
5381 rpm (approximately 90 Hz). The vibration sensors are 
mounted on the bearing cases with a sampling frequency of 2 
kHz. 

 

Fig. 24. A structural sketch of the machine set. 

In the running state, the vibration in bearing 2# is larger than 
the alarm limitation. Thus, we take the signal recorded in 
bearing 2# for analysis. The vibration signal and its spectrum 
are shown in Fig. 25. It can be seen that the vibration signal 
consists of the first order (1X) component of the rotation 
frequency and its higher-order components. The 1X component 
has the largest energy, which should be the main cause of the 
abnormal vibration. 

 

Fig. 25.  The waveform of the vibration signal and its spectrum. 

It is known that the IF of the 1X component corresponds to 
the instantaneous speed of the gas turbine shaft, which can 
reflect the current rotation condition. Therefore, we list the TF 
results in the frequency bank of 60 Hz-120 Hz created by 
different TFA methods. The STFT result (see Fig. 26(a)) is a 
coarse spectrum line that cannot provide accurate time-varying 
information. The TF results generated by the SST, RS and SET 
show some periodic oscillatory behaviors, as shown in Fig. 
26(b-d). Visually, the energy of the SST and RS results smears 
heavily, while the SET result obviously looks more 
energy-concentrated. 

Considering that the vibration signal has an oscillatory 
frequency, for the PTFA and DTFA method, we select the 
Fourier model as the parameter input. In Fig. 26(e-f), the PTFA 
and DTFA results are listed. It can be seen that, although the 
oscillatory features are characterized, the TF energy of both TF 
results obviously smears more heavily than that of the SET 
result. 

By detecting the peak data of the SET result, we redraw the 
oscillatory IF of the 1X component in Fig. 27 and calculate its 
spectrum, which shows the same frequency with the rotation 
frequency. If a rub-impact fault exists between the rotor and the 
static element, then during each rotation, it will cause the local 

speed-down and speed-up effect on the shaft. The oscillatory 
frequency of the instantaneous speed should be equal to the 
rotating frequency. Therefore, this oscillatory phenomenon of 
bearing 2# points to the existence of a rub-impact fault. 

 

Fig. 26. (a) STFT result, (b) SST result, (c) RS result, (d) SET result, (e) 
PTFA result and (f) DTFA result. 

 

Fig. 27.  The IF trajectory of the 1X component of the SET result and its 
spectrum. 

V. CONCLUSION 

Because the TF basis function used in linear TFA methods is 
bandwidth-wide in the time-frequency domain, the TF 
representation resulting from the inner product transform with 
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the TF basis must be restricted by the Heisenberg uncertainty 
principle, such that the energy of the generated TF 
representation smears heavily. In this paper, we propose a novel 
TFA method, called the SET, whose purpose is to improve the 
energy concentration of the TF representation. Via a 
post-processing method, the most-smeared TF energy is 
removed, and only the TF information related to signal 
time-varying features is retained. Simultaneously, the novel TF 
result allows for signal reconstruction and mode decomposition. 
In the processing of numerical signals and real-world signals, 
we focus on the comparison of the SET method with other 
classical and advanced TFA methods. By comparison, it can be 
concluded that, our proposed method has the best performance 
in improving the energy concentration. In the low SNR case, 
the SET method can provide better estimation of IF trajectories 
than the SST method, such that the reconstructed signals based 
on the SET result are more robust to noise than that based on 
the SST result. In the high SNR case, although the SET cannot 
give more accurately reconstructed results than the SST 
( =15ds ), the reconstruction method of the SET is more 
convenient and straight-forward than that of the SST, because 
the SET needs fewer parameters to reconstruct a signal. 

In this study, the SET is discussed as a post-processing tool 
for the STFT. In theory, this post-processing method can also 
be grafted into other TFA methods, such as the wavelet 
transform, S transform, and even PTFA and DTFA methods. 

A MATLAB implementation of the proposed algorithm is 
available at: 
http://cn.mathworks.com/matlabcentral/fileexchange/62483. 
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