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A Concentrated Time–Frequency Analysis Tool
for Bearing Fault Diagnosis

Gang Yu

Abstract— In industrial rotating machinery, the transient
signal usually corresponds to the failure of a primary element,
such as a bearing or gear. However, faced with the complexity and
diversity of practical engineering, extracting the transient signal
is a highly challenging task. In this paper, we propose a novel
time–frequency analysis method termed the transient-extracting
transform, which can effectively characterize and extract the
transient components in the fault signals. This method is based on
the short-time Fourier transform and does not require extended
parameters or a priori information. Quantized indicators, such
as Rényi entropy and kurtosis, are employed to compare the
performance of the proposed method with other classical and
advanced methods. The comparisons show that the proposed
method can provide a much more energy-concentrated time–
frequency representation, and the transient components can be
extracted with a significantly larger kurtosis. The numerical and
experimental signals are used to show the effectiveness of our
method.

Index Terms— Empirical mode decomposition (EMD), spec-
tral kurtosis (SK), synchrosqueezing transform, time–frequency
analysis, transient-extracting transform (TET).

I. INTRODUCTION

IN THE field of fault diagnosis for rotating machinery,
a signal processing method is widely applied to find the

features that are closely related to the mechanical fault [1], [2].
In the recorded vibration and sound signals, the faults usually
show the transient features that appear in a short period of
time [3]. Considering that the different fault signals occupy
distinct frequency bands, the joined time–frequency (TF)
analysis (TFA) is an effective tool for characterizing transient
faults that have nonstationary TF features [4]. Although the
direct applications of TFA methods in fault diagnosis have
been reported in many studies, the inherent shortcomings of
the classical TFA method have never been resolved effectively.
The linear TFA methods, e.g., short-time Fourier transform
(STFT) and wavelet transform (WT), are used to calculate the
inner product between the signal and the basis function that
has the ability to locate the TF features. However, since there
are no TF basis functions that can be compactly supported in
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the TF domain simultaneously, the linear TFA methods show
a poor ability to characterize the precise TF features. Bilinear
TFA methods, such as the Wigner–Ville distribution and the
Cohen class distribution, are to calculate the Fourier transform
of the local signal correlation. However, the unexpected cross
terms restrict the application of bilinear TFA methods greatly.
These shortcomings in the classical TFA methods can decrease
the sensitivity of the diagnosis system to some unobvious
faults, such as weak faults in their early stage and faults
surrounded by strong noises. To enhance the ability of the
TFA methods for detecting faults in a complex environment,
some advanced approaches have been proposed and intro-
duced in the past decade, e.g., empirical mode decomposition
(EMD) [5], the spectral kurtosis (SK) method [6], [7], and the
synchrosqueezing transform (SST) [8]–[10].

EMD is a data-driven method to decompose the 1-D sig-
nal into a series of intrinsic mode functions (IMFs). Since
different IMFs occupy distinct frequency bands, the transient
features of the IMF that contains the fault band can be highly
enhanced when compared to the original signal. Due to this
superiority, many EMD-based fault diagnosis methods have
been developed, and a comprehensive review can be found
in [11]. Although we cannot understand the mathematical
foundation of this method very well, some studies show that
the EMD behaves as a dyadic filter bank when dealing with
Gaussian noise. It denotes the factor that while performing
the time-series signal processing, the EMD decomposes a
signal using fixed dyadic filter banks. Since the frequency
band of the fault component in a real-world signal cannot
be known in advance, the decomposition results are such
that some IMFs may contain the expected fault component
or a fault component may be decomposed into several IMFs,
which is usually called mode mixing. Because the processing
behaviors of the EMD are difficult to control, sometimes the
EMD-based fault diagnosis methods are unpredictable and
unstable. Recently, more advanced methods are established
to improve the performance of the EMD, e.g., local mean
decomposition [12], ensemble EMD [13], and extreme-point
weighted mode decomposition [14].

The SK method is a technique to extract the most transient
component based on the kurtosis indicator. The kurtosis is a
statistical variable used to measure the temporal dispersion
of a time-series signal, and it can also be used to detect
the transients included in the fault signal. The SK method
first needs to expand the 1D signal into the 2-D TF plane
based on the STFT or the bandpass filter, and then one
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can reconstruct or select the component that is most related
to the fault with the largest kurtosis. Benefiting from the
sensitivity of the kurtosis indicator to the transient fault, the SK
methods show its effectiveness in diagnosing mechanical
faults [15], [16].

The SST method was introduced as a postprocessing tool
for the linear TFA methods and has been applied in the fault
diagnosis of rotating machinery [10]. The SST is intended
to obtain a sharper TF representation, which can characterize
the faults in high TF resolution. Meanwhile, the transient
components can be extracted from the sharper TF result.
To extract a signal from the SST result, it is necessary to
first estimate the IF trajectory corresponding to the transient
component. However, it is challenging to estimate the IF of
the transient component precisely, because the fault signals
usually do not meet the weakly time-varying requirement
of the SST framework. Furthermore, unexpected background
noises will introduce serious interference into the SST result,
which may lead to the IF being unable to be accurately
characterized. To further improve the performance of the
SST, some advanced methods are proposed, e.g., demodulated
SST [17], matching SST [18], high-order SST [19], and
synchroextracting transform (SET) [4].

From the above introduction, we can see that many
advanced technologies have been introduced to extract the
transient component from the original signal, which is an
essential issue for improving the fault detection ability of
a diagnosis system. In this paper, we propose a novel TFA
method that can characterize the transient features in the TF
plane precisely and extract it in the time domain. Comparisons
are made between the proposed method and the advanced
fault diagnosis methods, which include SK, EMD, SST, and
their improved versions. The rest of this paper is organized as
follows. Section II details the theory of our proposed method.
In Section III, the Rényi entropy and kurtosis indicator are
used to illustrate the quantified comparisons of the TF results
generated by different TFA methods. Experimental validations
are provided in Sections IV and V. The conclusions are drawn
in Section VI.

II. TRANSIENT-EXTRACTING TRANSFORM

A. Background of Time–Frequency Analysis

For a time-varying signal s(t), the linear TFA method
functions by correlating it with a dictionary of waveforms that
are concentrated in time and in frequency, i.e., TFA(t, ω) =
〈s(u), ψt,ω(u)〉, where 〈, 〉 denotes the inner product operator.
The basis function ψt,ω(u) is usually considered the TF-shift
waveform. However, the basis functions are support-limited in
the TF domain, such that the TF features of the signal must be
projected on a square region called the Heisenberg box. There-
fore, linear TFA methods provide a blurry TF explanation for
the time-varying signal. Especially for fault signals that have
a rapidly changing status, it is impossible to use the linear
TFA methods to characterize the transient feature precisely.
A numerical fault signal is modeled in Fig. 1(a) according
to the mechanical theory [20]–[23], and the analysis results
generated by the STFT and the WT are shown in Fig. 1(b)

Fig. 1. (a) Signal waveform. (b) STFT result. (c) WT result.

and (c). For the STFT, we select the Gaussian function as
the moved window and the window length is 100 samples.
For the WT, we employ the Morlet function to address this
transient signal. It can be observed that in the time direction,
the transient component in the TF plane has a much larger
spread than that in the original time-series domain. Although
the time-varying TF information can be obtained by the linear
TF transform, it must sacrifice the ability of locating the
transient event precisely.

B. Theory of Our Proposed Method

In this section, we start our study from the framework of
the STFT in analyzing the Dirac delta function that has the
perfect time location property. The STFT expression is given
as

G(t, ω) =
∫ +∞

−∞
g(u − t) · s(u) · e−iωu du (1)

where g(u − t) is the moved window and s(u) is the signal.
The STFT basis function g(u − t)e−iωu is moved in the time
domain and modulated in the frequency domain to detect any
time-varying changes that occurred in a signal. In mathematics,
the Dirac delta function δ(t) is a generalized function on the
real number line that is zero everywhere except at zero, with an
integral of one over the entire real line. In the time domain,
the Dirac function δ(t) should have the best time location,
since it only appears at one time point. Such that the Dirac
function can be regarded as an ideal model of a signal that has
transient features. Usually, a Dirac signal can be expressed as

sδ(t) = A · δ(t − t0). (2)

Herein, a discrete Dirac signal being sampled at 200 Hz
and A = 1, t0 = 0.5 s is employed to illustrate the deduced
procedure more intuitively. The time waveform and frequency
spectrum of the Dirac signal are shown in Fig. 2(a) and (b).
It can be seen that the ideal TF feature of the Dirac signal
should have the best time location and the worst frequency
location. The processed result of the Dirac signal by the STFT
is shown in Fig. 2(c). It can be observed that the energy
corresponding to the Dirac signal, which should have an ideal
time location, is expanded heavily in the TF plane. Restricted
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Fig. 2. (a) Dirac function signal with t0 = 0.5 s. (b) Frequency spectrum.
(c) STFT spectrogram. (d) Slice of the spectrogram at ω0 = 50 Hz,
i.e., |G(t, ω0)|. (e) GD t0(t, ω). (f) Slice of the GD at ω0 = 50 Hz,
i.e., t0(t, ω0). (g) TEO. (h) TET result.

to the Heisenberg uncertainty principle, for the STFT method,
it is impossible to achieve the ideal description even for a
simple Dirac signal. To explore the TF energy distribution of
the STFT result more specifically, we substitute (2) into (1),
then we can have

G(t, ω) =
∫ +∞

−∞
g(u − t) · A · δ(u − t0) · e−iωu du

= A · g(t0 − t) · e−iωt0 . (3)

Because |e−iωt0 | = 1, the energy distribution of the STFT
result of Dirac delta function can be formulated as

|G(t, ω)| = A · g(t0 − t). (4)

By (4), we can see that, because the window function g(·)
is compact in the time domain, the energy distribution of
|G(t, ω)| concentrates on the time t = t0 and reaches the
maximum value A · g(0) at this time point. To illustrate this
analysis clearly, a slice of the STFT spectrogram of this signal
at the frequency bin ω0 = 50 Hz is shown in Fig. 2(d). It can
be seen that, in the time direction, the TF energy spreads over
the region of window support [t0−�, t0+�], where� denotes
the window function time support.

Another point that should be demonstrated is that the STFT
of a Dirac function is constituted by a series of Dirac functions
with the same group delay (GD), in which the GDs are all
equal to t0. To estimate the GDs of each Dirac function

precisely, it is suggested to first calculate the derivative of
G(t, ω) with respect to the frequency variable. This results in
the following equation:

∂ωG(t, ω) = ∂ω(A · g(t0 − t) · e−iωt0 )

= −i t0 · A · g(t0 − t) · e−iωt0

= −i t0 · G(t, ω). (5)

The expression (5) leads to (6). For any (t, ω) and for which
G(t, ω) �= 0, a 2D GD t0(t, ω) for the STFT result (3) can be
formulated as

t0(t, ω) = i · ∂ωG(t, ω)

G(t, ω)
. (6)

To explain the GD more clearly, it is shown in Fig. 2(e),
and the slice of the GD at the frequency bin ω0 is shown
in Fig. 2(f). It can be observed that in the TF region
t ∈ [t0 − �, t0 + �], all values of the 2D GD are equal to
t0 = 0.5 s. For the ideal TF representation of the signal (2),
the energy should only appear at the time t0 instead of being
spread over a large region. This motivates us to remove the
smeared TF coefficients and only to retain the TF coefficient
at the time t0. To achieve this goal, a postprocessing procedure
called the transient-extracting operator (TEO) is proposed as

TEO(t, ω) = δ(t − t0(t, ω)). (7)

This considers that

t0(t, ω) =
{

t0, t ∈ [t0 −�, t0 +�], ω ∈ R+

0, otherwise.
(8)

Then, we can obtain

δ(t − t0(t, ω)) = δ(t − t0). (9)

Equation (9) means that the TEO is a 2D binarization
representation that has a value of one only at time t0 [see
Fig. 2(g)], such that it can be used to extract the TF coefficient
of G(t, ω) at this time point. Considering that (7) has a
transient-extracting behavior that can make the STTF result
much sparser, the new TFA method employing the TEO is
termed the transient-extracting transform (TET) and formu-
lated as

T e(t, ω) = G(t, ω) · T E O(t, ω). (10)

By (4), it is known that the STFT energy spreads in a large
region. Then, it is necessary to explore the energy distribution
of the proposed TET method in dealing with the Dirac function
signal. It is known that the Dirac delta function δ(x) has the
following property:

f (x) · δ(x − x0) = f (x0) · δ(x − x0). (11)

Therefore, the energy distribution of the novel TF represen-
tation can be calculated as

|T e(t, ω)| = |G(t, ω) · T E O(t, ω)|
= |A · g(t0 − t) · e−iωt0 · δ(t − t0(t, ω))|
= |A · g(t0 − t) · e−iωt0 · δ(t − t0)|
= |A · g(0) · e−iωt0 · δ(t − t0)|
= A · g(0) · δ(t − t0). (12)
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Fig. 3. TET representation of the numerical signal and the zoom.

Compared with the blurry energy distribution of the STFT
result (4), the energy of the TET result (12) is highly con-
centrated and only appears at time t0, which is equivalent
to the definition of the ideal TF representation of the Dirac
delta function. The TET result of the Dirac signal is shown
in Fig. 2(h). It can be observed that the smeared TF energy
disappears, and the retained TF coefficient has the same ideal
time location with the Dirac function signal. The numerical
signal of Fig. 1(a) is processed by the TET method. The TF
result and a zoomed-in view of it are shown in Fig. 3. It can
be seen that the energy concentration of the newly generated
TF representation is highly improved, and the transient fea-
tures are characterized much more precisely. From the theory
analysis and numerical validation, it can be concluded that the
proposed TET is more suitable for processing the transient
signals than the STFT.

Although the time-varying signal is represented in the TF
plane precisely, sometimes it is necessary to recover the time
waveform of the signal to obtain more information that is
essential for fault diagnosis. It is known that the STFT has
a signal reconstruction expression

s(t) = (2πg(0))−1 ·
∫ +∞

−∞
G(t, ω) · eiωt dω (13)

which can be interpreted to summarize all TF coefficients
along the frequency direction. It motivates us to extract the
transient component from the TET result with a similar
reconstruction expression, given as

s(t) = (2πg(0))−1 ·
∫ +∞

−∞
T e(t, ω) · eiωt dω. (14)

One can imagine that by means of integrating the more con-
centrated TF result, the TET reconstruction is more suitable to
extract the transient component than the STFT reconstruction.

C. Algorithm Implementation

In this section, we focus on the practical implementation of
the proposed algorithm. In discrete data processing, the par-
tial derivative is commonly implemented approximately by a
finite-difference operator, such that ∂ωG(t, ω) should be

∂ωG(t, ω) ≈ (G(t, ω + ω)− G(t, ω))/ω. (15)

However, (15) is a bias estimate for the parameter
∂ωG(t, ω). A more precise parameter estimation of ∂ωG(t, ω)
can be calculated by

∂ωG(t, ω) = ∂ω

(∫ +∞

−∞
g(u − t) · s(u) · e−iωu du

)

= −i ·
∫ +∞

−∞
g(u − t) · u · s(u) · e−iωudu

= −i ·
∫ +∞

−∞
g(u − t) · (u − t) · s(u) · e−iωu du

− i t ·
∫ +∞

−∞
g(u − t) · s(u) · e−iωu du

= −i(Gtg(t, ω)+ t · G(t, ω)). (16)

where Gtg(t, ω) can be calculated in the STFT framework
using alternative windows t · g(t). Substituting (16) into (7),
we have

δ(t − t0(t, ω)) = δ

(
Gtg(t, ω)

G(t, ω)

)
. (17)

Additionally, (10) can be rewritten as

T e(t, ω) = G(t, ω) · δ
(

Gtg(t, ω)

G(t, ω)

)
. (18)

Herein, we consider the practical implementation of the
discrete data s[n], n = 0, 1, . . . N − 1, where N is the
number of samples and the data s[n] correspond to a uniform
discretization of s(t) taken at the time tn = t0 + nT , where
T is the sampling interval. The Fourier transform of data
s[n] is calculated byS[k] = ∑N−1

n=0 s[n] · e−i(2π/N)nk , where
k = 0, 1, . . . N − 1. First, the TET algorithm needs to
calculate two STFTs (G[n, k] and Gtg[n, k]) with respect to
the windows g[n] and n · g[n]. The corresponding expressions
are, respectively, written as

G[n, k] =
N−1∑
m=0

s[m] · g[m − n] · e−i 2π
N mk . (19)

Gtg[n, k] =
N−1∑
m=0

s[m] · [m − n] · g[m − n] · e−i 2π
N mk .(20)

Then, it is necessary to estimate the TEO. In a discrete data
process, the Dirac delta function can be obtained by

δ [n] =
{

1, n = 0

0, n �= 0.
(21)

Considering that the practical data are real-valued, the operator
should be taken with the real part of the equation. At the
same time, the practical calculation errors cannot be neglected.
Therefore, the TEO can be obtained by

δ

[
Gtg[n, k]
G[n, k]

]
=

⎧⎨
⎩

1,

∣∣∣∣Re

[
Gtg[n, k]
G[n, k]

]∣∣∣∣ < ε

0, otherwise.
(22)

where ε = (tl − tl−1)/2 = T/2 and Re[] denotes taking real
part. Then, the TET representation can be obtained by

T e[n, k] =
⎧⎨
⎩

G[n, k],
∣∣∣Re

[
Gtg[n,k]
G[n,k]

]∣∣∣ < T

2
0, otherwise.

(23)
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Fig. 4. Rényi entropies of the TF results by different TFA methods under
different noise levels (SNR of 1–30 dB).

Eventually, according to the signal reconstruction expression
(14), the discrete transient component can be extracted by

s[n] = (2πg(0))−1 · Re

⎡
⎣N−1∑

k=0

Te[n, k] · e
i
2π

N
nk

⎤
⎦ . (24)

From the discrete formulation (23), the computational com-
plexity can be known that the TET has the same level of
burden with the STFT. Meanwhile, the transient component
can be recovered conveniently. Considering that the STFT has
been widely applied in real-time engineering, the TET method
has the potential for use in real-time applications as well.

III. NUMERICAL VALIDATION

To evaluate the performance of the generated TF repre-
sentation and to extract the transient component by different
methods objectively, we employ two indicators to quantify the
analysis results, which are the Rényi entropy and kurtosis.
Information entropy is a common measure used to estimate
the dispersion of information content, such that we adopt
the Rényi entropy to evaluate the energy distribution of the
TF representation. The Rényi entropy of order α for the TF
representation is defined as

Rα = 1

1 − α
log2

∫ ∫
TFR(t, ω)αdtdω∫ ∫
TFR(t, ω)dtdω

(25)

where the order is usually set as α = 3. A lower Rényi entropy
of the TF result denotes that the TFA method in question can
generate a more concentrated TF representation and provide a
more accurate characterization of the time-varying TF features.
The numerical signal in Fig. 1 is added with Gaussian white
noises ranging from 1 to 30 dB of SNR. The TFA methods,
STFT, WT, SST, and our proposed TET, are employed to
address these noisy signals. The Rényi entropies of these
TF representations generated by different TFA methods are
calculated and listed in Fig. 4, which shows that the TET
results have the smallest Rényi entropies at each noise level.

The TF representations of the noisy signal with an SNR
equal to 3 dB are shown in Fig. 5. It can be observed that
restricted to the Heisenberg uncertainty principle, the STFT
and WT cannot provide an energy-concentrated TF represen-
tation. The SST technique is designed to enhance the TF
energy concentration of the signal with a weakly modulated
frequency and asymptotic modulated amplitude [8]. However,
when addressing a signal with a strongly modulated amplitude,

Fig. 5. (a) STFT result. (b) TET result. (c) WT result. (d) SST result.

Fig. 6. Under different noise levels (SNR of 1–30 dB), the kurtosis of the
reconstructed results from the TET is compared to the original noisy signals.

e.g., this numerical signal, the SST fails to give an energy-
concentrated TF result [see Fig. 5(d)]. In Fig. 5(b), the TET
result looks much sparser than in the other TFA methods.

Kurtosis is a measure of peakedness and, hence, has been
accepted as a sensitive indicator to reflect the transient fea-
tures of a fault signal. Herein, the kurtosis is employed to
evaluate the analysis results. A larger kurtosis of the results
reconstructed by the TFA method means that a given method
has a better ability to extract the transient component.

Due to the fact that the TET allows for transient compo-
nent reconstruction, the kurtosis of the original signal and
the signals recovered by the TET are calculated and shown
in Fig. 6. It can be seen that with an increase of the added
noises, the kurtosis of the original signals decreases, which
means the noises can destroy the transient features of the
signal. At each noise level, the TET results have the larger
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Fig. 7. Structural sketch of the machine set.

kurtosis, which denotes that the TET is effective to extract the
transient component when compared to the original signal

IV. BEARING FAULT ANALYSIS OF ROTATING MACHINERY

UNDER CONSTANT SPEED

Rolling element bearings are one of the most prevalent
components in rotating machines, and their failure is one of the
most frequent reasons for machine breakdown. The vibration
signal recorded from the rotating machines is an effective
way to diagnose the current operation of the bearing. In this
section, the data set with two-type faults provided by the
Case Western Reserve University Bearing Data Center is used
as the experimental data to validate the proposed method. The
structural sketch is shown in Fig. 7, which mainly contains a
motor, a torque transducer, and a dynamometer [14]. The test
bearing (6105-2RS JEM SKF) is used to support the motor
shaft. Two heavy faults are introduced to the bearing outer
race and inner race via electrodischarge machining. Vibration
signals are recorded by an accelerometer, which is placed at
the drive end of the motor housing. The current rotating speed
is 1796 r/min. According to the bearing parameters and the
rotating speed, we can calculate that the fault characteristic
frequencies of the outer race fault and the inner race fault
are 107.3 and 162.1 Hz, which also means that the inter-
val between two adjacent transients should be 9.3197 and
6.169 ms, respectively.

A. Outer Race Fault Data Analysis

The waveform of the vibration signal with the outer race
fault is shown in Fig. 8(a), which shows somewhat repetitive
transients. The TF representations generated by the STFT,
TET, WT, and SST are shown in Fig. 8(b)–(e), and the zoom-
in view of the TF results is shown in the right-hand side.
With the aid of TFA technology, the TF features of the
repetitive transients can be expanded into the TF plane to
provide more essential information than the individual time-
domain analysis. It can be observed that the STFT provides
a coarse description of the transients that makes it difficult to
locate the TF information precisely. In Fig. 8(c), the proposed
TET method generates a much sparser TF result, which can
provide better TF location ability. The WT provides a similarly
coarse TF result as that of the STFT [see Fig. 8(d)], which

Fig. 8. (a) Fault signal waveform. (b) STFT result. (c) TET result. (d) WT
result. (e) SST result.

TABLE I

RÉNYI ENTROPIES OF THE TF RESULTS IN FIGS. 8 AND 9

TABLE II

REQUIRED COMPUTATIONAL TIME BY SEVERAL METHODS

is because the inner product-based TFA methods must be
restricted by the Heisenberg uncertainty principle. Although
the SST is designed to obtain a sharper TF result, the SST
result in Fig. 8(e) is still blurry and divergent.

For more comparisons, we utilize the high-order SST (e.g.,
second-SST, third-SST, and fourth-SST) and SET methods to
address this signal, and the TF results are shown in Fig. 9.
It can be observed that the SST and SET methods seem to
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TABLE III

KURTOSIS OF THE DECOMPOSED RESULTS BY DIFFERENT METHODS

TABLE IV

RÉNYI ENTROPIES OF THE TF RESULTS IN FIG. 14

TABLE V

KURTOSIS OF THE DECOMPOSED RESULTS BY DIFFERENT METHODS

Fig. 9. (a) Second-SST result. (b) Third-SST result. (c) Fourth-SST result.
(d) SET result.

be not suitable for dealing with such a signal with strong
amplitude-modulated law. Moreover, the corresponding Rényi
entropies of all TF results are listed in Table I, which quanti-
tatively illustrate that the TF location ability of our proposed
method is the best option. The computation efficiency of
a TFA method is also essential in real-time applications.
Herein, we test the computational time required for the above-
mentioned TFA methods in addressing this vibration signal.
The computation times are listed in Table II. It can be seen that
the TET method and other methods can finish the processing

Fig. 10. Extracted transient components by (a) TET method and (b) envelop
spectrum.

Fig. 11. Kurtogram generated by the SK.

within 1 s, which denotes that the proposed method has a high
efficiency level.

Meanwhile, the transient component in the TET result
is extracted and shown in Fig. 10(a). Compared with the
original signal, the transient features of the extracted signal are
obviously improved, making this reconstruction more suitable
for diagnosing the fault type. In Fig. 10(b), the outer race fault
frequency (denoted as fo = 107 Hz) derived from the envelop
spectrum is clearly characterized.

We also consider using the SK and EEMD techniques
to reconstruct the transient components from the original
vibration signal. According to the framework of the SK
method, we first display the kurtogram in Fig. 11, which can
indicate the best bandwidth and the central frequency. The
reconstructed component is shown in Fig. 12, which shows
some transients.

Considering that the EMD may suffer from drawbacks
such as mode mixing and the end effect, an EEMD method
that can improve the performance of the original EMD is
employed to decompose the IMFs. In the operation of EEMD,
the parameters are set to an ensemble member of 100 and
added noise with a standard deviation of 0.2. The first five
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Fig. 12. Signal filtered by the SK method.

Fig. 13. IMF results decomposed by the EEMD.

IMFs are shown in Fig. 13. To compare the decomposed
results quantitatively, the kurtosis of the results processed by
the TET, SK, and EEMD is calculated and listed in Table III.
It can be seen that the proposed TET method provides a
decomposed result with a significantly larger kurtosis than the
other methods. It can be concluded that our proposed method
is more suitable for extracting the transient components.

B. Inner Race Fault Data Analysis

In this section, we focus on analyzing the vibration sig-
nal with an inner race fault, whose waveform is shown
in Fig. 14(a). It can be seen that this signal is surrounded
by a heavy amount of noise and does not show obvious fault
transients. The TF representations created by different methods
are shown in Fig. 14(b)–(e). The Rényi entropies are listed
in Table IV. It can be seen that the proposed TET method
provides the sparsest TF representation and characterizes the
fault transients with the best TF resolution when compared
to other TFA methods. The extracted result and the envelop
spectrum are shown in Fig. 15 and show the obvious inner
race fault frequency (denoted as fi = 162 Hz).

The SK and EEMD methods are used to analyze the
vibration signal. According to the kurtogram (see Fig. 16),
the component with the largest kurtosis is decomposed and
displayed in Fig. 17. It can be seen that the decomposed results
of SK do not show obvious fault transients. This is because
the selected bandwidth may not cover the significant portion
of the fault-excited frequency region, such that the kurtogram
fails to indicate the best bandwidth and central frequency.

The first five IMFs obtained by EEMD are shown in Fig. 18.
It can be observed that the fault transients are still surrounded

Fig. 14. (a) Fault signal waveform. (b) STFT result. (c) TET result. (d) WT
result. (e) SST result.

Fig. 15. Extracted transient components by (a) TET method and (b) envelop
spectrum.

by heavy amounts of noise. The kurtosis of all decomposed
results is listed in Table V, which demonstrates that the
proposed TET method provides a result with a significantly
larger kurtosis than other methods.

V. BEARING FAULT ANALYSIS OF ROTATING MACHINERY

UNDER TIME-VARYING SPEED

In this section, we focus on analyzing the bearing faults of
a rotating machinery under time-varying speed. The structural
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Fig. 16. Kurtogram generated by the SK.

Fig. 17. Filtered signal by the SK method.

Fig. 18. IMF results decomposed by the EEMD.

sketch is shown in Fig. 19(a). The type of the test bear-
ing is SKF 6205. Two faults are introduced to the bearing
outer race and inner race via wire cutting, which are shown
in Fig. 19(b) and (c). Vibration signals are recorded by the
accelerometer that is placed at the bearing housing. Mean-
while, the rotating speed is also recorded by an inductive
sensor (tachometer). According to the bearing parameters,
it can be calculated that the ratio of the fault characteristic
frequencies of the outer race fault and the inner race fault
with respect to the rotating frequency should be 3.584 and
5.416, respectively.

A. Outer Race Fault Data Analysis

In this section, we first deal with the vibration signal of the
bearing with outer race fault. The vibration signal is collected

Fig. 19. (a) Structural sketch of the machine set. (b) Outer race fault. (c)
Inner race fault.

Fig. 20. (a) Rotating speed. (b) Waveform of vibration signal. (c) STFT
result. (d) TET result.

during a speed-up procedure of about 1800–2450 r/min
(30–40.8 Hz). The rotating speed and the vibration signal are
shown in Fig. 20(a) and (b). It can be seen that, with the
increasing of rotating speed, the amplitude of the vibration
signal becomes much larger. Then, this signal is first addressed
by the STFT and TET methods. In Fig. 20(c) and (d), to show
much clearer TF features, we only display the TFA results at
a small TF region (2.25–2.4 s and 0–2000 Hz). It is obvious
that the energy of TET result is more concentrated than that of
the STFT result, which is more helpful for precisely locating
the occurrence of each transient.
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Fig. 21. (a) Reconstructed signal by TET result. (b) Zoomed-in view
waveform. (c) Zoomed-in view waveform. (d) TF spectrogram.

Fig. 22. (a) WT result. (b) SET result. (c) SST result. (d) Fourth-SST result.

Then, we reconstruct the signal from the TET result,
which is plotted in Fig. 21(a). Meanwhile, two fragments
of the reconstructed signal at a short time are shown
in Fig. 21(b) and (c). It is obviously shown that each transient
has a very short duration and the interval between two
adjacent transients in the low-speed stage is larger than that
in the high-speed stage. Moreover, in Fig. 21(d), we display
the time-varying trajectory of outer race fault characteristic
frequency (red dotted line) together with the TF spectrogram
of the envelope of this reconstructed signal. It can be seen
that the time-varying fault characteristic frequency and its
high-order components are well characterized in the TF
spectrogram. For more comparisons, the TF results of the
vibration signal generated by other TFA methods are shown

Fig. 23. (a) Rotating speed. (b) Waveform of vibration signal. (c) STFT
result. (d) TET result.

Fig. 24. (a) Reconstructed signal by TET result. (b) Zoomed-in view
waveform. (c) Zoomed-in view waveform. (d) TF spectrogram.

in Fig. 22. However, all these TF results are too blurry to
provide a precise TF description.

B. Inner Race Fault Data Analysis

In this section, we address the vibration signal recorded
from the rotating machinery where the bearing is being
with inner race fault. The vibration signal is collected dur-
ing a speed-down procedure of about 2600–1800 r/min
(43.3–30 Hz). The rotating speed and the vibration signal are
shown in Fig. 23(a) and (b). In Fig. 23(c) and (d), the TF repre-
sentations show that the TET provides a significantly concen-
trated result than the STFT. The reconstructed signal from the
TET result and its zoomed version are shown in Fig. 24(a)–(c).
It can be seen that, in the high-speed stage, the vibration signal
has a relatively large amplitude and small interval between
each transient. Moreover, in Fig. 24(d), we plot the time-
varying trajectory of inner race fault characteristic frequency
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(red dotted line) together with the TF spectrogram of the
envelope of this reconstructed signal. It is obvious that the
time-varying fault characteristic frequency and its high-order
components are clearly characterized in the TF spectrogram.
It can be concluded that the proposed TET method is an
effective tool for fault diagnosis of rotating machinery under
the time-varying speed.

VI. CONCLUSION

In this paper, we propose a novel TFA method. Via a
postprocessing operation for the STFT representation, most of
the blurry TF energy is removed, and only the TF information
closely related to signal transient features is retained, such that
the TF location ability can be improved greatly compared to
the STFT method. Meanwhile, the novel TF result allows for
transient component reconstruction. To gauge their abilities
to deal with both numerical signals and real-world signals,
we focus on the quantitative comparisons of the proposed
method with other classical and advanced methods. Through
the comparisons, it can be concluded that our proposed method
has the best performance in improving the energy concentra-
tion and can decompose the transient components with the
largest kurtosis compared to the other methods. The proposed
method has the same computational complexity level as the
STFT, which implies that it also has potential for the real-time
application. The MATLAB code of the TET can be found on:
https://ww2.mathworks.cn/matlabcentral/fileexchange/70319.

REFERENCES

[1] S. Wang, X. Chen, G. Li, X. Li, and Z. He, “Matching demodulation
transform with application to feature extraction of rotor rub-impact
fault,” IEEE Trans. Instrum. Meas., vol. 63, no. 5, pp. 1372–1383,
May 2014.

[2] Z. K. Peng, G. Meng, F. L. Chu, Z. Q. Lang, W. M. Zhang, and
Y. Yang, “Polynomial chirplet transform with application to instanta-
neous frequency estimation,” IEEE Trans. Instrum. Meas., vol. 60, no. 9,
pp. 3222–3229, Sep. 2011.

[3] W. Huang, G. Gao, N. Li, X. Jiang, and Z. Zhu, “Time-frequency
squeezing and generalized demodulation combined for variable speed
bearing fault diagnosis,” IEEE Trans. Instrum. Meas., to be published.

[4] G. Yu, M. Yu, and C. Xu, “Synchroextracting transform,” IEEE Trans.
Ind. Electron., vol. 64, no. 10, pp. 8042–8054, Oct. 2017.

[5] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” Proc.
R. Soc. Lond. A, Math. Phys. Sci., vol. 454, no. 1971, pp. 903–995,
Mar. 1998.

[6] J. Antoni, “The spectral kurtosis: A useful tool for characterising
non-stationary signals,” Mech. Syst. Signal Process., vol. 20, no. 2,
pp. 282–307, Feb. 2006.

[7] S. Wang, G. Cai, Z. Zhu, W. Huang, and X. Zhang, “Transient signal
analysis based on Levenberg–Marquardt method for fault feature extrac-
tion of rotating machines,” Mech. Syst. Signal Process., vols. 54–55,
pp. 16–40, Mar. 2015.

[8] I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet trans-
forms: An empirical mode decomposition-like tool,” Appl. Comput.
Harmon. Anal., vol. 30, no. 2, pp. 243–261, Mar. 2011.

[9] S. Wang, X. Chen, G. Cai, B. Chen, X. Li, and Z. He, “Matching
demodulation transform and synchrosqueezing in time-frequency analy-
sis,” IEEE Trans. Signal Process., vol. 62, no. 1, pp. 69–84, Jan. 2014.

[10] J. Shi, M. L. Dan, D.-S. Necsulescu and Y. Guan, “Generalized
stepwise demodulation transform and synchrosqueezing for time–
frequency analysis and bearing fault diagnosis,” J. Sound Vib., vol. 368,
pp. 202–222, Apr. 2016.

[11] Z. K. Peng, P. W. Tse, and F. L. Chu, “A comparison study of improved
Hilbert–Huang transform and wavelet transform: Application to fault
diagnosis for rolling bearing,” Mech. Syst. Signal Process., vol. 19, no. 5,
pp. 974–988, 2005.

[12] J. S. Smith, “The local mean decomposition and its application to EEG
perception data,” J. Roy. Soc. Interface, vol. 2, no. 5, pp. 443–454, 2005.

[13] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition:
A noise-assisted data analysis method,” Adv. Adapt. Data Anal., vol. 01,
no. 01, pp. 1–41, Jan. 2009.

[14] J. Zheng, H. Pan, T. Liu, and Q. Liu, “Extreme-point weighted mode
decomposition,” Signal Process., vol. 142, pp. 366–374, Jan. 2018.

[15] S. Wang, W. Huang, and Z. K. Zhu, “Transient modeling and parameter
identification based on wavelet and correlation filtering for rotating
machine fault diagnosis,” Mech. Syst. Signal Process., vol. 25, no. 4,
pp. 1299–1320, May 2011.

[16] H. Liu, W. Huang, S. Wang, and Z. Zhu, “Adaptive spectral kurtosis
filtering based on Morlet wavelet and its application for signal transients
detection,” Signal Process., vol. 96, pp. 118–124, Mar. 2014.

[17] S. Wang, X. Chen, C. Tong, and Z. Zhao, “Matching synchrosqueezing
wavelet transform and application to aeroengine vibration monitoring,”
IEEE Trans. Instrum. Meas., vol. 66, no. 2, pp. 360–372, Feb. 2017.

[18] S. Wang, X. Chen, I. W. Selesnick, Y. Guo, C. Tong, and X. Zhang,
“Matching synchrosqueezing transform: A useful tool for characteriz-
ing signals with fast varying instantaneous frequency and application
to machine fault diagnosis,” Mech. Syst. Signal Process., vol. 100,
pp. 242–288, Feb. 2018.

[19] D.-H. Pham and S. Meignen, “High-order synchrosqueezing trans-
form for multicomponent signals analysis—With an application to
gravitational-wave signal,” IEEE Trans. Signal Process., vol. 65, no. 12,
pp. 3168–3178, Jun. 2017.

[20] H. Ma, J. Zeng, R. Feng, X. Pang, Q. Wang, and B. Wen, “Review on
dynamics of cracked gear systems. Engineering failure analysis,” Eng.
Failure Anal., vol. 55, pp. 224–245, Sep. 2015.

[21] W. A. Smith and R. B. Randall, “Rolling element bearing diagnostics
using the case western reserve university data: A benchmark study,”
Mech. Syst. Signal Process., vols. 64–65, pp. 100–131, Dec. 2015.

[22] D. He, H. Cao, S. Wang, and X. Chen, “Time-reassigned synchrosqueez-
ing transform: The algorithm and its applications in mechanical sig-
nal processing,” Mech. Syst. Signal Process., vol. 117, pp. 255–279,
Feb. 2019.

[23] G. Yu, Z. Wang, and P. Zhao, “Multi-synchrosqueezing transform,” IEEE
Trans. Ind. Electron., to be published.

Gang Yu received the B.Eng. degree in mechanical engineering from Qingdao
University, Qingdao, China, in 2010, and the Ph.D. degree in mechanical
engineering from Shandong University, Jinan, China, in 2016.

He is currently a Lecturer in mechanical engineering with the University
of Jinan, Jinan. His current research interests include time–frequency analysis,
blind source separation, modal identification and machinery condition moni-
toring, and fault diagnosis.


