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  Abstract— A hierarchical market structure is proposed in this 
paper for multiple microgrids to participate in transmission-level 
real-time balancing markets and to provide ancillary services to 
the utility grid. At the distribution level, local microgrids with 
distributed sustainable resources, such as demand response, 
distributed renewables, and energy storage, are economically 
dispatched by a distribution system operator (DSO). A bi-level 
optimization model is formulated to guarantee the goals of both 
DSO and microgrids. It is solved by developing Karush-Kuhn-
Tucker (KKT) conditions and combining the two problems into 
one mathematical programming with complementarity 
constraints (MPCC). Furthermore, since the physical topology 
and distribution power flow constraints are enclosed to form a 
non-convex optimal power flow (OPF) model, a convexification 
technique is implemented to transform the original problem into a 
mixed integer quadratic constrained problem (MIQCP) for better 
computation performance. At the transmission level, DSOs 
strategically bid with generation companies to win the desired 
share of the market managed by a transmission system operator 
(TSO). A multivariate linear regression (MLR) is developed to 
capture the correlation between the bid gained and the prices 
offered by the DSO and its opponents to maximize its possibility of 
winning the bid. Simulation studies on IEEE test systems verify 
the proposed framework. 

Index Terms—Convexification, hierarchical balancing market, 
mathematical program with complementary constraints (MPCC), 
multi-microgrid, multivariate regression. 

NOMENCLATURE 
Acronyms: 
DSR Distributed sustainable resource 
DR Demand response 
CHP Combined heat and power plants 
LSE Load serving entity 
PEV Plug-in electric vehicle 
DSO Distribution system operator 
DG Distributed generator 
MO Market operator 
MGA Microgrid aggregator 
WEM Wholesale electricity market 
LMP Locational marginal price 
RTBM Real-time balancing market 
MPCC Mathematical program with 

complementary constraints 
KKT Karush-Kuhn-Tucker conditions 
MIQCP Mixed integer quadratic constrained 

programming 
DLMP Distribution locational marginal price 
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MLR Multivariate linear regression 
TSO Transmission system operator 
GENCO Generation company 
OPF Optimal power flow 
MG Microgrid 
PCC Point of common coupling 
QCP Quadratic constrained programming 
MPPT Maximum power point tracking 
Sets and Indices: 
T Index of the sub-hourly time interval 
NT Length of sub-hourly time interval 
t Index within one sub-hourly time interval 
k Index of distributed generators 
Z, z Set and index of demand response block 
m Index of microgrids 
i,j Index of the head bus and tail bus of one 

line in the distribution/transmission system 
NGENCO, g Set and index of generation companies at 

real-time balancing market 
NDSO Set of distribution system operators at real-

time balancing market 
Constants: 
ap 

k , bp 
k , cp 

k  Coefficients of generation cost function of 
the kth distributed generator (DG) 

ecz 
m, qz 

m(t) Price and quantity of zth demand response 
(DR) block in mth microgrid [$/MWh, 
MW] 

PDG,min 
k , PDG,max 

k  Lower and upper generation bound of the 
kth DG [MW] 

PLoad 
m (t) Load of the mth microgrid [MW] 

Pch,max 
es , Pdis,max 

es  Maximum charge/discharge rate of energy 
storage [MW] 

SOCmin 
es ,SOCmax 

es  Capacity limit of energy storage [MWh] 
PWT 

m (t), PPV 
m (t) Power generation of wind turbines and 

PVs in mth microgrid [MW] 
λpen, λloss The price for power exchange deviation, 

and distribution network losses [$/MWh] 
rij, xij Resistance and reactance of line ij at 

distribution system 
yij Admittance of line ij at distribution 

system 
Umin, Umax Bus voltage limit [p.u.] 
PL 

j,DSO (t), QL 
j,DSO (t)  Active/reactive load at bus j at distribution 

system[MW] 
PL 

i,TSO,T , QL 
i,TSO,T  Active/reactive load at bus i at 

transmission system[MW] 
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ag,T, bg,T, cg,T Generation cost coefficients of the gth 
GENCO at Tth sub-hourly time interval 

Gij, Bij Conductance and susceptance of line ij at 
transmission system 

Pcap 
d  Maximum bidding capacity of DSO[MW] 

λGENCO,T, Pbid 
GENCO,T Bidding price and bidding quantity of 

GENCOs at the Tth sub-hourly time 
interval [$/MWh, MWh] 

Variables: 
CP 

DG(PDG 
k (t)) Generation cost of the kth DG [$] 

PDG 
k (t) Generation of the kth DG [MW] 

uz 
m (t) 0-1 binary variable of DR block 

Pch 
es (t),Pdis 

es (t) Charge/discharge rate of energy storage 
[MW] 

EDRm(t) The cost of dispatching DR in mth 
microgrid [$] 

SOCes(t) Energy level of energy storage [MWh] 
Pgrid 

m,buy(t), Pgrid 
m,sell(t) Power exchange between the mth 

microgrid and the distribution system 
[MW] 

DRm(t) The amount of DR dispatched in mth 
microgrid [MW] 

λ 
m(t) Distribution locational marginal price 

received by the mth microgrid [$/MWh] 
δPRT 

PCC(t) Deviation from scheduled power 
exchange at PCC[MW] 

PRT 
PCC(t) Real-time power exchange at PCC [MW] 

Ui(t), Uj(t) Head and tail bus voltage of line ij at 
distribution system [p.u.] 

Pflow 
ij (t), Qflow 

ij  (t) Active/reactive power flow on line ij at 
distribution system 

Ploss 
ij  (t), Qloss 

ij (t) Active/reactive power losses on line ij at 
distribution system 

Iij(t) Current flow on line ij at distribution 
system 

PG 
g,T Generation quantity of the gth GENCO at 

the Tth sub-hourly time interval [MWh] 
Vi,T,Vj,T Head and tail bus voltage of line ij at 

transmission system 
θij,T Voltage angle difference of line ij at 

transmission system 
λDSO,T, Pbid 

DSO,T Bidding price and bidding quantity of 
DSO at the Tth sub-hourly time interval 
[$/MWh, MWh] 

λcleared 
DSO,T  ,Pcleared 

DSO,T  Market cleared price and cleared bid 
received by DSO at the Tth sub-hourly time 
interval [$/MWh, MWh] 

I. INTRODUCTION 
HE emerging plug-and-play demand-side resources begin to 
take an non-negligible part in power system operation. 

Compared with conventional generators, these new distributed 
sustainable resources (DSRs), such as demand response (DR) 
programs, roof-top solar, electric vehicles or distributed energy 
storage, combined heat and power plants (CHP), hold the 
following benefits [1]: 1) they are free from ramping 

insufficiency, which leads to faster response speeds; 2) the 
diversity of demand-side resources provides flexibility when 
reacting to a real-time dispatch schedule; 3) their dispersed 
distribution and closeness to end-consumers reduces long-
distance power transfer losses. Therefore, it can be safely 
concluded that the various small-sized, elastic distributed 
sustainable resources possess considerable potentials in 
providing energy and ancillary services to the utility grid. 
 There are many studies focusing on involving demand 
response into transmission-level electricity market to improve 
market efficiency. Ref. [2] investigates the possible effects of 
load-shifting demand response program on market clearing, 
which suggests that a flexible shifting demand bid can 
contribute to both consumers’ bill saving and total generation 
cost decreasing. Ref. [3]-[4] discuss the optimal dispatch 
schedule for load aggregator with multiple DR programs in 
wholesale electricity market, including load curtailment, load 
shifting, onsite generation, and energy storage. Ref. [5] 
explores leveraging direct load control in mitigating the risky 
variation of real-time critical peak pricing, where a multi-
objective model is established to minimize both schedule cost 
and emission cost. Ref. [6] explores the possibility of exploiting 
demand-side reserve to support system reliability under n-k 
contingency. A robust dispatch model is developed to optimize 
the total operation cost under worst-cast contingency.  
 All the above works have established a solid foundation for 
further in-depth exploration of the significant potentials of 
demand-side sustainable resources in participating in electricity 
market and contributing to system-wide economy and stability 
improvement. The focus of these previous research works on 
the demand response performance are mainly at the 
transmission level. This applies to large-capacity industrial 
loads or large-scale aggregation of residential loads. However, 
for other small-scale demand-side resources such as distributed 
wind, roof-top solar, distributed energy storage (i.e., electric 
vehicle), diesel generation or fuel cell, direct penetration into 
transmission system is usually denied due to their limited 
capacity.  

Furthermore, DSRs are usually located within several 
geographical regions, and their scattered penetration into the 
power system will result in mass organization, computation, 
and communication burdens, which limit the electricity market 
efficiency. 

Motivated by the above two concerns, researchers have been 
working on developing a distribution-level electricity market to 
better aggregate various demand-side DSRs and to coordinate 
their operation with the bulk power system. In this regard, an 
intermediate party, i.e. a load serving entity (LSE) [7], a plug-
in electric vehicle (PEV) aggregator [8], a microgrid aggregator 
[9], or a distribution system operator (DSO) [10], 
communicates with the upper-level utility grid and manages the 
economic operation of DSRs accordingly. A distribution-level 
electricity market framework is demonstrated in [11]-[12], 
where distributed generators (DGs), DRs, and microgrids trade 
with each other in the charge of a local electricity coordinator 
to maintain local power supply-demand balance. Dynamic 
pricing is formulated in [13] to stimulate microgrids to 

T 
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exchange power with distribution networks. Ref. [14] inspects 
the effects of implementing distribution locational marginal 
price on different demand-side participants in contributing to 
distribution congestion management and voltage support. 
However, these studies focus on the participation of demand-
side resources at the distribution level only, with no 
transmission system involved.  

Refs. [15]-[16] model the interaction between distribution 
system with demand-side resources and transmission system. 
Further, these studies included uncertainties of the demand-side 
resources. which results in a two-stage problem. The price 
signals utilized by the distribution system operator to schedule 
demand-side resources are treated as constants. Ref. [17] 
considers the optimal bidding strategy for distribution company 
participating in both energy and reserve market. A multi-
objective programming is designed in [18] to model the 
interactive behaviors among the transmission market operator 
(MO), DSO, and a network of microgrids with non-
dispatchable renewable energy sources. In [19], a tri-level 
market framework is proposed to enable microgrids to 
participate in electricity market bidding through the microgrid 
aggregator (MGA). In [20]-[21], a more complex hierarchical 
market structure is proposed to include both wholesale 
electricity markets (WEMs) and distribution markets. For 
computation efficiency, the proposed tri-layer model is further 
transformed into bi-level programming by applying sensitivity 
functions and duality theory, respectively. 

Inspired by the above works, a hierarchical real-time 
balancing market (RTBM) framework is proposed in this paper 
to stimulate DSR-driven microgrids to provide balancing 
service to the transmission system. The major novelty of our 
work, if compared with the previous works, is that we construct 
a tri-level electricity market mechanism with active DSRs’ 
participation in real-time operation. The ramping-free feature 
and the diversity of DSRs gives it considerable flexibility in 
responding to real-time dispatch, hence making it an ideal 
alternative to conventional standby units for power regulation. 
To the best of the authors’ knowledge, few studies have 
investigated the demand-side participation in tri-level 
interactive market at a real-time scale, which puts a higher 
requirement on computational efficiency, although the 
practicability of applying demand-side resources in day-head 
energy and reserve market has been deliberated in references 
[17]-[21]. 

Furthermore, each level of our model includes 
comprehensive market participants: in the local microgrid 
system, a variety of DSRs is comprised to demonstrate its 
flexibility; at the distribution system, physical constraints are 
encompassed to ensure the dispatch schedule is feasible in 
practice; and at the transmission system, the mutual relationship 
among different market participants is studied. Specifically, we 
design an optimal bidding strategy for each of DSOs with the 
consideration of interaction with other market participants, 
instead of simply transforming the multi-level program into one 
unified optimization problem with mathematics techniques. 
The model in the paper is more delicate and closer to real-world 
situations without much assumption and simplification. 

The main technical contributions of this paper are detailed as 
follows: 
1) At the distribution level of the proposed market framework, 

a bi-level model is formulated to optimize the goal of both 
distribution system operators and DSR-driven microgrid 
operators. It is later transformed into a mathematical 
program with complementarity constraints (MPCC) by 
developing Karush-Kuhn-Tucker (KKT) conditions for 
better computing efficiency. 

2) The above MPCC model includes nonconvex distribution 
power flow constraints. A linearization technique is 
leveraged to reduce model complexity, which results in 
mixed integer quadratic constrained programming (MIQCP). 
The distribution locational marginal price (DLMP) is 
utilized as the control signal for the DSO to manage the 
individual microgrid’s behaviors. 

3) At the transmission level of the proposed market framework, 
DSO bids with other DSOs and generation companies in the 
balancing market to make up for the real-time power supply-
demand gap of the transmission system. To maximize the 
probability of winning the bid, a multivariate linear 
regression (MLR) method is applied to study the correlation 
between the bid obtained and the price offered, which 
facilitates in the bidding decision making of the DSO. 

The rest of this paper is organized as follows. Section II 
demonstrates the hierarchical real-time balancing market 
framework involving multiple microgrids; Section III models 
the interaction between the DSO and microgrids at the 
distribution level; Section IV formulates the transmission 
market bidding problem; Section V tests the proposed model on 
standard IEEE systems; and Section VI concludes the paper. 

II. HIERARCHICAL REAL-TIME BALANCING MARKET 
FRAMEWORK WITH MULTI-MICROGRID PARTICIPATION 

A. Market Framework 
The real-time balancing market (RTBM) is part of the 

standard modern electricity market. The other parts include the 
day-ahead market and hour-ahead market. A RTBM is launched 
in each sub-hourly interval (e.g., 5-15 minutes) during the 
operational hour to clear any unbalance and to constantly 
guarantee systematic stability. This is realized by the 
transmission system operator (TSO) who selectively activates 
the bids submitted by generators with capacity resources or 
demand resources that are available to minimize system 
operation cost.  

In this paper, we involve groups of DSR-driven microgrids in 
participating in RTBM bidding to provide balancing services to 
the transmission system under the management of the DSO. 
Since microgrids have no direct access to the transmission-level 
wholesale market, a hierarchical market framework is designed 
as shown in Fig. 1.  

In Fig. 1 (a), the proposed market framework consists of two 
levels. At the transmission level market bidding, the 
participants include DSOs and generation companies 
(GENCOs), who submit their demand or generation blocks. The 
TSO then conducts an optimal power flow (OPF) calculation 
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and sends back the market clearing results to the bidders. At the 
distribution level, since the DSO does not own any power 
sources, it will stimulate the local microgrids (MGs) to reach 
the cleared market bid by releasing a price signal, i.e., the 
distribution locational marginal price (DLMP). An individual 
microgrid power exchange with a distribution system at the 
connected bus is obtained via an economic dispatch process 
under the given price. Finally, the aggregated response of 
multiple microgrids is evaluated as the power exchange at the 
point of common coupling (PCC), and should equal the cleared 
bid, as is demonstrated in Fig. 1 (b). In addition, we assume that 
a microgrid contains comprehensive DSRs including 
dispatchable generators (i.e. micro turbines, fuel cells, diesel 
generators), renewable generators (i.e. wind turbines, solar 
panels), energy storage, and demand response resources, which 
can also be observed from Fig. 1 (b). 

. . .
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Offer

Cleared 
bid

Supply 
Offer

Cleared 
bid

Supply 
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bid
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exchange
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exchange
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MG m

DLMP Power 
exchange

Real-time 
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market bidding

Multi-microgrid 
coordination

Transmission System Operator
 (TSO)

 
 (a) Overall market framework 

 
(b) Topology of distribution system with multi-microgrid integration  

Fig. 1 Hierarchical real-time balancing market (RTBM) framework 

The timeline of the proposed market is shown in Fig. 2. Note, 
from the figure, during real-time operation, one hour is split into 
several sub-hourly intervals with the same length. Before the 
starting of each sub-hourly time interval, the balancing market 
bidding will be launched, and DSO will receive the cleared 
bidding quantity and cleared price. Then, during the entire sub-
hourly time interval, DSO will send out DLMP to microgrids to 
maintain the power exchange at the PCC to a steady level, i.e., 
the cleared bid.  

Balancing market 
bidding

Multi-microgrid 
response

1 2 … t

N1

… …

N2 NT

1 2 … t 1 2 … t

(Sub-hourly 
time interval)

 
 
Fig. 2. Timeline of hierarchical balancing market 

B. Additional Remarks 
According to ref. [22], the bidding blocks for the balancing 

market are submitted hours before the real-time operation. This 
applies to GENCOs in this paper. For DSOs, since their bidding 
blocks come from an aggregated microgrid response, which 
may fluctuate during real-time operation due to the existence of 
renewables and loads, we assume that DSOs can make 
modifications of their bidding blocks based on the latest 
forecast of the microgrid response for every sub-hourly time 
interval bidding. This decision-making process is accelerated 
by the convexification method that we utilize in the following 
section to meet with real-time dispatch. 

Another remark concerns microgrid privacy. Generally, 
microgrid operators are autonomous entities who have the 
intact authority over local DSRs like DGs and demand. In our 
study, since microgrids have to depend on the DSO to 
participate in the electricity market, we assume that the DSO 
has certain access to microgrid information. This can be 
realized by ex-ante contracts between DSOs and microgrids. In 
the following work, we assume that the contract has already 
been formed and detailed discussion on this part is omitted. 

III. DISTRIBUTION LEVEL PROBLEM FORMULATION: BI-LEVEL 
OPTIMIZATION 

As stated in Section II-A, at the distribution level of the 
proposed hierarchical market framework, the DSO drives the 
microgrids to reach the cleared bid by utilizing DLMP. This is 
a bi-level optimization problem, since the DSO and microgrids 
have their respective objectives. Thus, one level for DSO and 
the other for microgrids are needed.   

A. Lower-level Optimization: Economic Dispatch of 
Individual Microgrid 

From the perspective of the microgrid operator, its optimal 
response under DLMP is derived from the following economic 
dispatch model: 

, ,
1

( ( ( )) ( ) ( ( ) ( )) ( ))
TN

P DG grid grid
DG k m m buy m sell m

t k m
Min C P t t P t P t EDR tλ

= ∈

+ × − +∑ ∑ (1) 

 2( ( )) ( ) ( ( ))
k

P DG p p DG p DG
DG k k k k kC P t a b P t c P t= + +   (2) 

 
1

( ) ( ) ( )
Z

z z z
m m m m

z
EDR t ec q t u t

=

= ∑   (3) 

Eq. (1) calculates the operation cost of the mth microgrid over 
one sub-hourly time interval, where the first term is the 
generation cost of dispatchable generators, which has a 
quadratic form, as shown in Eq. (2); the second term is the 
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power exchange cost, which is a product of DLMP, λm (t) and 
the net power purchased by the microgrid. The last term is the 
cost of dispatching DR resources that reside in the microgrid, 
which is calculated by Eq. (3). uz 

m (t) is a 0-1 binary variable 
indicating whether the zth demand response block qz 

m(t) is 
dispatched or not, and ecz 

m is the unit price. Microgrid economic 
dispatch should also satisfy the following constraints: 

          ,min ,max( )DG DG DG
k k kP P t P≤ ≤   (4) 

 
1

0 ( ) ( ) ( ) ( )
Z

z z Load
m m m m

z
DR t q t u t P t

=

≤ = ≤∑   (5) 

 1( ) ( ), 2,...,z z
m mu t u t for z Z− ≥ =   (6) 

  ,max ,max0 ( ) ,0 ( )ch ch dis dis
es es es esP t P P t P≤ ≤ ≤ ≤   (7)     

es es( ) ( 1)+ ( ) ( ) /ch dis
es es es esSOC t SOC t P t P tη η= − ∆ − ∆            

(8) 
   min max( )es es esSOC SOC t SOC≤ ≤   (9)

, ,( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) 0

Load grid grid WT PV DG
m m buy m sell m m k

k m
dis ch

es es m
es m

P t P t P t P t P t P t

P t P t DR t
∈

∈

− + − − −

− − − =

∑
∑

(10) 

Eq. (4) is the generator capacity constraint of DGs in the mth 
microgrid; Eqs. (5)-(6) limit that the total demand response 
dispatched should not exceed the load, and the demand 
response blocks are dispatched in an increasing order; Eq. (7) is 
the charge/discharge rate limit of the energy storage; Eq. (8) 
calculates the energy level of energy storage, where ƞes is its 
efficiency and ∆ is the length of the time interval; Eq. (9) is the 
capacity limit of energy storage; finally, Eq. (10) is the power 
balance constraint of the microgrid.   

In the above microgrid economic dispatch model, the 
network losses are not included in the power balance constraint. 
The reason is that in our model, microgrids are connected to the 
main distribution system. The network losses of the small-scale 
microgrid are negligible if compared with the distribution 
network losses (i.e., the power losses along the main feeder). 
Furthermore, the model is designed for a real-time application, 
which requires fast computational speed. Hence, for model 
simplicity and computational efficiency, the power loss of 
microgrid in the lower-level economic dispatch is neglected. 

Note that in the objective function (1), the second term is 
nonconvex, since the DLMP received by the mth microgrid is 
unknown until DSO calculates an optimal power flow. We will 
later address this issue by applying KKT conditions at the end 
in this section. 

B.  Upper-level Optimization: Minimizing Power Exchange 
Deviation 

From the perspective of DSO, the real-time power exchange 
that takes place at PCC should equal the cleared bid at the 
balancing market. The DSO solves the following optimization 
problem with the aim of minimizing the deviation of actual 
power flow at PCC from the cleared bid: 

 
1

( ( ) ( ))
TN

pen RT loss loss
PCC ij

t ij
Min P t P tλ δ λ

=

+∑ ∑   (11) 

1
( ) ( )RT flow

PCC ij
i

P t P t
=

= ∑          (12) 

    , ,( ) ( ), ( ) ( )RT cleared RT RT cleared RT
PCC DSO T PCC PCC DSO T PCCP t P P t P t P P tδ δ≥ − ≥ − +    (13) 

 ,0 ( )RT cleared
PCC DSO TP t Pδ α≤ ≤   (14) 

        
'

' ( )

, , ,

( ) ( ) ( )

( ) ( ( ) ( ))

flow flow loss
ij jj ij

j n j

L grid grid
j DSO m sell m buy

m j

P t P t P t

P t P t P t
∈

∈

− −

= − −

∑

∑
  (15) 

    ' ,
' ( )

( ) ( ) ( ) ( )flow flow loss L
ij jj ij j DSO

j n j
Q t Q t Q t Q t

∈

− − =∑   (16) 

 
2

2 *

( ) ((Re{ ( )} Re{ ( )})
(Im{ ( )} Im{ ( )}) )*Re{ }

loss
ij i j

i j ij

P t U t U t
U t U t y

= −
+ −

  (17) 

 
2

2 *

( ) ((Re{ ( )} Re{ ( )})
(Im{ ( )} Im{ ( )}) )* Im{ }

loss
ij i j

i j ij

Q t U t U t
U t U t y

= −
+ −

  (18) 

    
( ( ) ( ) )

Re{ ( )} ( )
( )

flow flow
ij ij ij ij

j i
i

P t r Q t x
U t U t

U t
+

= −   (19) 

 
( ( ) ( ) )

Im{ ( )}
( )

flow flow
ij ij ij ij

j
i

P t x Q t r
U t

U t
−

= −   (20) 

 2 2( ) (Re{ ( )}) (Im{ ( )})i i iU t U t U t= +   (21) 

    min maxRe{ ( )}iU U t U≤ ≤    (22) 
In Eq. (11), the first two terms are the penalty for deviating 

from the market cleared bid and network losses cost, where λpen 
and λloss are the price for power deviation and losses, and δPRT 

PCC 
is the power exchange deviation. Note, the reason for 
minimizing the power exchange deviation is that the DSO first 
bids in the transmission-level balancing market and receives a 
cleared quantity. Then, it drives the microgrids to reach the 
cleared quantity required by the transmission system via price 
incentive; otherwise DSO will be penalized by the transmission 
market. The cleared quantity is measured as the power 
exchange at the PCC. As a result, the DSO includes the 
deviation of actual power exchange at PCC from the cleared 
quantity in its objective function to minimize the potential 
penalty. 

Eq. (12) calculates the real-time power exchange at PCC. 
The power deviation is calculated by Eq. (13) to guarantee that 
the penalty is always positive, where Pcleared  

DSO,T is the market cleared 
bid received by DSO at the Tth sub-hourly time interval. Eq. (14) 
ensures that the deviation is confined within a certain bound; in 
the following simulations, α is set to 1%. Eq. (15)-(16) are the 
power flow constraints in the DistFlow form, where n(j) is the 
set of buses that belong to the line with bus j as the head bus. 
Eq. (17)-(18) calculate the active and reactive losses on line ij. 
A detailed deduction of the line loss calculations is shown as 
follows [23]: 

* *

* * * * *

2 2 2 2 *

2 2 *

( ) Re{ ( ) ( )} Re{ ( ) ( )}
Re{ ( )( ( ) ( )) ( )( ( ) ( ))}*Re{ }
Re{e 2 2 e }*Re{ }
Re{(e e ) ( ) }*Re{ } Eq.(17)

loss
ij i ij j ij

i i j j i j ij

i i i j i j j j ij

i j i j ij

P t U t I t U t I t
U t U t U t U t U t U t y

f e e f f f y
f f y

= −
= − − −
= + − − + +
= − + − =

  (23) 

The same applies to the reactive line loss calculation. Eq. (19)
-(20) calculate the bus voltage magnitude of line ij. It can be 
noticed that both constraints are nonconvex due to the existence 
of division. For the sake of simplicity, we assume that in 
distribution system, the bus voltage magnitude is around 1 p.u. 
i.e. |Ui(t)|≈ 1; and the bus voltage angle is around 0 rad, i.e. 
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Im{Ui(t)} ≈ 0,  |Ui(t)| ≈ Re{Ui(t)}. Hence, Eq. (19)-(20) can be 
rewritten as: 
 Re{ ( )} Re{ ( )} ( ( ) ( ) )flow flow

j i ij ij ij ijU t U t P t r Q t x= − +   (24) 
 Im{ ( )} ( ( ) ( ) )flow flow

j ij ij ij ijU t P t x Q t r= − −   (25) 
The above linearization leads to quadratic constrained 

programming (QCP), which can be directly cracked by existing 
solvers. Eq. (22) is the boundary of voltage magnitude, in this 
case it is set to [0.95 p.u., 1.05 p.u.]. 

C. Reconstruction of the Bi-level Optimization into MPCC 
As is shown above, at the distribution level, both the DSO 

and microgrids have their own objective functions and 
operation constraints, which is a bi-level problem. For efficient 
computation, we apply KKT (Karush-Kuhn-Tucker) conditions 
of the microgrid economic dispatch problem and transform the 
bi-level problem into the following mathematical programming 
with complementarity constraint (MPCC): 

First, we introduce Lagrangian multipliers to constraints (4)-
(10) and acquire the following Lagrangian function:  

, ,
1

min ,min max ,max

1 min

2 1

max

( ( ( ( ))) ( ) ( ( ) ( )) ( )

( ( )( ( )) ( )( ( ) ))

( )( ( ) ( )) ( )(0 ( ) ( ))

(

TN
P DG grid grid

m DG k m m buy m sell m
t k m

DG DG DG DG
k k k k k k

k m
Z Z

z z z z z
m m m m m m

z z

m

L C P t t P t P t EDR t

t P P t t P t P

t u t u t t q t u t

λ

ω ω

ω ω

ω

= ∈

∈

−

= =

= + × − +

+ − + −

+ − + −

+

∑ ∑

∑

∑ ∑

1
,min ,max ,max

,min ,max ,max

,min min ,m

)( ( ) ( ) ( ))

( ( )(0 ( )) ( )( ( ) )

( )(0 ( )) ( )( ( ) )

( )( ( ))

Z
z z Load
m m m

z
ch ch ch ch ch
es es es es es

es m
dis dis dis dis dis
es es es es es
soc soc
es es es es

t q t u t P t

t P t t P t P

t P t t P t P

t SOC SOC t

ω ω

ω ω

ω ω

=

∈

−

+ − + −

+ − + −

+ − +

∑

∑

ax max

, ,

( )( ( ) )

( )( ( ) ( 1) ( ) ( ) / ))

( )( ( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ))

es es
ch dis

es es es es es es es
Load grid grid WT PV DG

m m m buy m sell m m k
k m

dis ch
es es m

es m

t SOC t SOC

v t SOC t SOC t P t P t

t P t P t P t P t P t P t

P t P t DR t

η η

ν
∈

∈

−

+ − − − ∆ + ∆

+ − + − − −

− − −

∑

∑

    (26) 

In Eq. (26), ωmin 
k (t), ωmax 

k (t), ωz 
m(t), ωmin 

m (t), ωmax 
m (t), ωch,min 

es (t), ω
ch,max 
es (t), ωdis,min 

es (t), ωdis,max 
es (t), ωsoc,min 

es (t), ωsoc,max 
es (t), νes(t), and νm(t) 

are the Lagrangian multiplier for the constraints (4)-(10), 
respectively. We further develop the following KKT 
conditions, including 1st order partial derivatives and 
complementary slackness constraints, as an equivalent 
alternative of the microgrid economic dispatch model: 

1) 1st order partial derivative: 

 ( )
min max

| 0 2 ( )
( ) ( ) ( ) 0

DG
k

p DG p
m k k kP t

k k m

L c P t b
t t v tω ω

∇ = ⇒ +

− + − =
  (27) 

 ,buy

,sell

( )

( )

| 0 ( ) ( ) 0
| 0 ( ) ( ) 0

grid
m

grid
m

m m mP t

m m mP t

L t v t
L t v t

λ

λ

∇ = ⇒ − =

∇ = ⇒ − + =
  (28) 

1 min
( )

max

| 0 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0, 1,..., 1

z
m

z z z z z
m m m m m m mu t

z z
m m m m

L ec q t t t t q t

t q t v t q t z Z

ω ω ω

ω

+∇ = ⇒ + − −

+ − = = −
   (29) 

 
min

( )

max

| 0 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0,

z
m

z z z z
m m m m m mu t

z z
m m m m

L ec q t t t q t

t q t v t q t z Z

ω ω

ω

∇ = ⇒ + −

+ − = =
  (30) 

ch,min ch,max
( )

dis,min dis,max
( )

| 0 ( ) ( ) ( ) ( ) 0
| 0 ( ) ( ) ( ) / ( ) 0

ch
es

dis
es

m es es es es mP t

m es es es es mP t

L t t v t v t
L t t v t v t

ω ω η

ω ω η

∇ = ⇒ − + − ∆ + =

∇ = ⇒ − + + ∆ − =
 (31) 

 
SOC,min SOC,max

( )| 0 ( ) ( )

( ) ( 1) 0, 1,..., 1
esm SOC t es es

es es T

L t t

v t v t t N

ω ω∇ = ⇒ − +

+ ∆ − + ∆ = = −
  (32) 

 
SOC,min SOC,max

( )| 0 ( ) ( )

( ) 0,
esm SOC t es es

es T

L t t

v t t N

ω ω∇ = ⇒ − +

+ ∆ = =
  (33) 

2) Complementary slackness: 

 
min ,min

max ,max

0 ( ) ( ( ) ) 0

0 ( ) ( ( )) 0

DG DG
k k k

DG DG
k k k

t P t P

t P P t

ω

ω

≤ ⊥ − ≥

≤ ⊥ − ≥
  (34) 
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1
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1

0 ( ) ( ) ( ) 0

0 ( ) ( ( ) ( ) ( )) 0

Z
z z
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Z
Load z z
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z
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t P t q t u t

ω

ω

=

=

≤ ⊥ ≥

≤ ⊥ − ≥

∑

∑
  (35) 

 10 ( ) ( ) ( ) 0z z z
m m mt u t u tω −≤ ⊥ − ≥   (36) 
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,max ,max

0 ( ) ( ) 0

0 ( ) ( ( )) 0
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es es
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t P t

t P P t

ω

ω

≤ ⊥ ≥

≤ ⊥ − ≥
      (37) 
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,max ,max

0 ( ) ( ) 0

0 ( ) ( ( )) 0

dis dis
es es
dis dis dis
es es es

t P t

t P P t

ω

ω

≤ ⊥ ≥

≤ ⊥ − ≥
  (38) 

 
,min min

,max max

0 ( ) ( ) 0

0 ( ) ( ) 0

soc
es es es
soc
es es es

t SOC t SOC

t SOC SOC t

ω

ω

≤ ⊥ − ≥

≤ ⊥ − ≥
  (39) 

 0 ( ) ( ) 0dis ch
es esP t P t≤ ⊥ ≥   (40) 

 , ,0 ( ) ( ) 0grid grid
m buy m sellP t P t≤ ⊥ ≥   (41) 

3) Equality constraints (8),(10); 
Eq. (27)-Eq. (41) are the equivalent representation of the 

individual microgrid economic dispatch problem (1)-(10). The 
first-order partial derivative of each variable to the Lagrangian 
function (26) is calculated and is set to zero to constitute 
equality constraints. This is because at the optimal point, the 
first-order partial derivative should be zero. The above 
functions are Eq. (27)– Eq. (33). Next, the inequality constraints 
in the original economic dispatch model are represented by 
complementary slackness constraints, as is shown by Eq. (34)-
Eq. (39). The complementary slackness constraint means that 
the product of the Langrangian multiplier and the inequality 
constraint should be zero. Complementary slackness is an 
indicator of whether the original constraint is active or not. If 
the original constraint is strictly “less than”, then the 
Lagrangian multiplier is zero; if the Lagrangian multiplier is 
greater than zero, then the inequality should equal 0, meaning 
that the variable reaches the boundary. Eq. (40) indicates that 
the charge and discharge of energy storage cannot happen in the 
same time. Eq. (41) indicates that the buying and selling of 
microgrid power also cannot happen in the same time. 

From Eq. (28), we can see that the original nonconvex term 
λm (t) ×(Pgrid 

m,buy(t)-Pgrid 
m,sell(t)) in the microgrid objective function (1) 

is decoupled into a linear equality constraint. The DLMP 
received by the microgrid equals the Lagrangian multiplier of 
the power balance constraint vm(t). vm(t) also appears in Eq. (27), 
(29) and (31), which can be explained as the marginal cost for 
power sources in the microgrid should equal the compensation, 
i.e., DLMP.  

Note that in the complementary slackness constraints, there 
still exists a nonconvex term, which is the product of two 
variables, e.g. ωmin 

k (t) PDG 
k (t). We apply the big-M method to 

linearize the constraint as follows: 



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2884223, IEEE
Transactions on Sustainable Energy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

 

min ,min

,min min

min min min

0 ( ) ( ( ) ) 0

0 ( ) ( )

0 ( ) (1 ( )) ( ) {0,1}

DG DG
k k k

DG DG
k k k

k k k

t P t P

P t P M t

t M t t

ω

δ

ω δ δ

≤ ⊥ − ≥

⇒ ≤ − ≤ ⋅

≤ ≤ ⋅ − ∈，

  (42) 

In Eq. (42), M is a very large number and δmin 
k (t) is a 0-1 

binary variable. This transformation can be uniformly applied 
to Eq. (34)-(41). By now, the lower level microgrid ED problem 
is replaced by the above affine constraints with binary 
variables. These constraints are added to the QCP model of the 
DSO, which eventually leads to the following MPCC problem: 
minimizing (11), subject to (8),(10),(12)-(18), (22),(24)-(25), 
(27)-(41), which is in essence a mixed integer quadratic 
constrained programming (MIQCP). 

IV. TRANSMISSION LEVEL PROBLEM FORMULATION: 
STRATEGIC MARKET BIDDING 

A. Balancing Market Bidding: an ACOPF Problem 
As stated in Section II-A, at the transmission-level balancing 

market, DSOs and GENCOs submit their bidding blocks. The 
bidding blocks follow a staircase fashion for marginal cost (i.e., 
piece-wise-linear for the total cost curve).  

The bidding blocks of GENCOs include the generation 
quantity and the desired price; the bidding blocks of DSOs 
include the demand quantity and the price they are willing to 
offer. After the TSO receives all the bidding blocks, it will first 
convert the bidding blocks into corresponding generator 
capacities and costs (demand bids are treated as negative 
generation), then runs the following ACOPF to find the optimal 
generator allocation and the locational marginal price: 

 2
, , , , , , ,

1
min ( ( ) ) ( )

GENCO DSON N
G G bid

g T g T g T g T g T DSO T DSO T
g

a P b P c Pλ
=

+ + + −∑ ∑  (43) 

              
, , , ,

, , , ,
1

. .

( cos sin )

G L bid
g T i TSO T DSO T

g i DSO i
n

i T j T ij ij T ij ij T
j

s t P P P

V V G Bθ θ
∈ ∈

=

− −

= +

∑ ∑

∑
 (44) 

 , , , , , ,
1

( sin cos )
n

L
i TSO T i T j T ij ij T ij ij T

j
Q V V G Bθ θ

=

− = −∑   (45) 

 ,min ,max
, , , ,, 0G G G bid cap

g T g T g T DSO T dP P P P P≤ ≤ ≤ ≤   (46) 
In Eq. (43), ag,T, bg,T and cg,T are the generation cost 

coefficients of the gth GENCO at Tth sub-hourly time interval 
(transformed from the staircase bidding curves); P G 

g,T is the 
generation quantity; λDSO,T is the price offered by the dth DSO; 
and Pbid 

DSO,T is its demand. NGENCO and NDSO are the total number 
of generation companies and DSOs participating in market 
bidding, respectively. Eqs. (44)-(45) are the power balance 
constraints at the transmission system. Eq. (46) represents the 
upper and lower bounds of generation and demand, which can 
be obtained from their bidding blocks. After solving the above 
ACOPF, the TSO converts the generator allocation and price 
into cleared bids and notices the bidders. The uniform price 
equal to the marginal unit price is set as the price settlement 
rule. The above process repeats for every sub-hourly time 
interval until reaching the end of 1 hour. 

In our study, we assume that GENCOs submit a set of supply 
offers containing three bidding blocks, and DSOs submit a set 

of demand bids containing one bidding block. Neither GENCOs 
nor DSOs have the knowledge of the bidding blocks of their 
counterparts, therefore it’s an incomplete information decision-
making process for DSOs to form bidding blocks. To win the 
desired bid, we apply multivariate linear regression in the next 
part to optimize the DSO’s bidding strategies. 

B. Strategic Bidding based on MLR 
The aim of strategic bidding for DSOs is to find the optimal 

price to offer in the market to gain the desired amount of power. 
According to the market rules, the demand block with the 
highest price will be first activated by TSO. On the other hand, 
the DSO intends to lower the price as much as possible to save 
the cost for purchasing power. To balance the trade-off between 
winning the bid and lowering the price, one effective way is to 
study the relationship between the bidding price and the cleared 
quantity. In this part, we apply a multivariate linear regression 
(MLR) method to describe this specific relationship. 

It can be deduced from Eq. (43)-(46) that the cleared bid of 
one DSO is affected by the generation quantity and the 
associated price of GENCOs, as well as the demand bid of other 
DSOs, hence can be expressed as follows: 
 , , ,( , , , , , )cleared bid

DSO T DSO T DSO TP f Pλ= - bid bid -
GENCO,T DSO,T GENCO,T DSO,Tλ λ P P    (47) 

In Eq. (47), the first three terms in function f  are the bidding 
prices of GENCOs, the DSO, and other DSOs at the Tth sub-
hourly time interval, the fourth term is the bidding quantity of 
GENCOs, and the last two terms are the bidding quantity of the 
DSO and other DSOs. The letter in bold represents the vector. 
For simplicity, we assume that GENCOs have a large enough 
capacity to support the demand of all DSOs, and the marginal 
cost of GENCOs is lower than the price offered by DSO. Hence 
λGENCO,T, Pbid 

GENCO,T (both are 1×NGENCO vectors), Pbid 
DSO,T , and Pbid- 

DSO,T 
(both are 1×(NDSO-1) vectors) can be neglected in function f. A 
multivariate linear function can be developed as follows to 
calculate the bidding price: 

 , ,

, , ,

( , )
[ , ][ , ]

cleared
DSO T DSO T

cleared cleared T
DSO T DSO T DSO T

P f
W P

λ
λ

= ⇒
=

-
DSO,T

- -
DSO,T DSO,T

λ
W λ

  (48) 

Notice that in Eq. (48), W–
DSO,T  is a 1×(NDSO-1) coefficient 

vector of λ- 
DSO,T, and Wcleared 

DSO,T is the coefficient of Pcleared 
DSO,T.  The above 

multivariate regression process relies on the historical bidding 
data to obtain the accurate coefficients.  

The overall balancing market bidding process is depicted in 
Fig. 3, and is summarized as follows: 
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Fig. 3. Hierarchical balancing market bidding process 

1) Prior to the beginning of sub-hourly time interval T, the 
real-time balancing market bidding is launched at the 
transmission level. DSOs decide their optimal bidding quantity 
and bidding price based on the following MPCC model: 

 
, 1

1
( ( ) ( ))

T

DSO T

N
cleared RT loss loss

PCC ij
t ij

Min P t P tλ λ
−

=

+∑ ∑    (49) 

. . (8), (10), (12) (18), (22), (24) (25), (27) (41)s t − − −  

 ,
1

( ) /
TN

bid RT
DSO T PCC T

t
P P t N

=

= ∑   (50) 

Note that Eq. (49) is slightly different from Eq. (11) in the 
first term. The former is λcleared 

DSO,T-1 PRT 
PCC(t), while the latter is λpen δP

RT 
PCC. The reason is that, to calculate the bidding quantity at the 
Tth sub-hourly time interval, Pbid 

DSO,T, we first need to calculate the 
assumptive power exchange at PCC, PRT 

PCC(t), at the Tth interval. 
This value is obtained by running the dispatch under the price 
stimulus of λcleared 

DSO,T-1, which is the market clearing price at the (T-
1)th interval. Then PRT 

PCC(t) is averaged over NT to obtain Pbid 
DSO,T. 

Since the bidding starts at the beginning of the Tth time interval, 
and the DSO has no knowledge of the upcoming load and RES 
generation in the microgrids, therefore cannot be certain of the 
exact amount of power exchange that will take place at PCC. 
By averaging the power exchange as the bidding quantity, the 
real-time deviation can be minimized. After getting the value of 
Pbid 

DSO,T , it is placed in Eq. (48) to get λDSO,T(set Pcleared 
DSO,T =Pbid 

DSO,T) via 
MLR, and therefore, Pbid 

DSO,T and λDSO,T constitutes the bidding 
block for the Tth sub-hourly time interval (λDSO,T, Pbid 

DSO,T).  
2) DSOs submit the customized bidding blocks to the 

balancing market, and then obtain the market clearing price and 
cleared quantity from TSO. The historical record is updated 
based on the latest market clearing result to improve the 
accuracy of MLR analysis.  

3) At the beginning of the Tth sub-hourly time interval, DSO 
decides the DLMP based on MPCC model (11), and motivates 
the local microgrids to generate the required cleared quantity at 
PCC. The uncertain factors, i.e., renewable generation and load 
consumption, are updated based on the latest forecast. 

4) If the whole market process does not reach the end of the 
operation period, then goes to 1) to repeat the above steps. 
Otherwise the power balancing service is completed. 

From Section III and Section IV, note that in the proposed 
tri-level market model, microgrids with multiple DSRs are 
treated as price takers, since they respond to the DLMP released 
by the DSO; and DSO is regarded as price makers at the 
transmission-level market bidding. This role-setting is 
reasonable since the aggregation of large number of  microgrids 
increases the market power of DSO and makes it possible for 
DSO to negotiate at the transmission bidding market, which can 
prevent oligopoly and eventually improve market efficiency. 

V. CASE STUDY 

A. Test case description and modeling parameters 
In this section we test the proposed hierarchical market 

framework on the IEEE 30-bus system, which is served as the 
balancing market. Six GENCOs and three DSOs participate in 
market bidding. The IEEE 33-bus distribution system, IEEE 13-
bus distribution system, and IEEE 69-bus distribution system 
serve as DSOs. Three microgrids are connected to the IEEE 33-
bus distribution system, as shown in Fig. 1 (b). The 13-bus 
system has 2 microgrids connected, and the 69-bus system has 
5 microgrids connected. The compositions of each microgrid 
are summarized in TABLE I. The parameters for various 
Distributed Sustainable Resources (DSRs) such as distributed 
wind turbine (WT), solar photovoltaic (PV), diesel generation 
(DE), micro turbine (MT), fuel cell (FC), energy storage (ES), 
and demand response (DR) are obtained from [24]-[25]. Also, 
WT, PV, DE, MT and FC are referred to as DGs in the case 
study. Wind turbines and PVs are assumed to work at MPPT 
(maximum power point tracking) mode with zero cost. Wind 
speed data, solar irradiation data and load data are obtained 
from [26]-[27].  

TABLE I MICROGRID COMPOSITION 

DSO1 
MG1:WT,WT,PV,PV,DE,DE,ES,DR MG2: DE, MT, FC, ES, DR 
MG3:WT, PV, MT, MT, FC, ES, DR  

DSO2 MG1:WT,WT, PV, MT, MT, ES, DR MG2:WT, FC, FC, DR 

DSO3 
MG1: WT, PV, PV, DE, DE, ES, DR 
MG3: WT, PV, MT, MT, ES, DR 
MG5: PV, WT, FC, DR 

MG2:WT, DE, MT, ES, DR 
MG4:WT, FC, FC, FC, ES, 
DR 

WT: wind turbine; PV: photovoltaic panel; DE: diesel generation; MT: micro 
turbine; FC: fuel cell; ES: energy storage; DR: demand response 

B. Simulation results 
(1) Verification of quadratic-constrained power flow model 
In our simulation, we first test the accuracy of the applied 

quadratic constrained power flow model (15)-(18), (24)-(25). 
We compare the bus voltage results between a standard AC 
power flow calculation and QCP calculation. The maximum 
relative error of bus voltage for a 13-bus system, 33-bus system, 
and 69-bus system are 0.005%, 0.383%, and 0.437%. The 
comparison verifies that the simplified QCP power flow model 
is an accurate enough substitute of AC power flow model. 

Furthermore, since the proposed hierarchical market 
framework is set in a real-time context, the computation 
performance is a significant concern, and is illustrated as 
follows: the simulation is carried out on a hybrid platform, 
MATLAB 2016a and GAMS 24.7. The transmission-level 
balancing market bidding is completed by Matpower/Smart 
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Market [28]. The distribution level MIQCP problem is solved 
by DICOPT on GAMS. The hardware environment is a laptop 
with Intel®Core™ i5-6300U 2.4 GHz CPU, and 4.00 GB 
RAM. For the 13-bus system, the number of equations is 851, 
and the number of variables is 801, including 135 integer 
variables; for the 33-bus system, the number of equations is 
2,096, and the number of variables is 2001, including 270 
integer variables; for the 69-bus system, the number of 
equations is 3851, and the number of variables is 3726, 
including 390 integer variables. Computation time for deriving 
the DLMP in each sub-hourly interval is provided in TABLE II: 

TABLE II COMPUTATION EFFICIENCY OF MIQCP MODEL FOR DSOS 
Interval 
index 1 2 3 4 5 6 7 8 9 10 11 12 

Time 
(s) 

DSO1 0.99 1.73 1.36 1.84 2.15 1.29 1.43 0.99 1.22 1.14 1.64 1.00 

DSO2 0.46 0.47 0.49 0.37 0.46 0.62 0.59 0.44 0.53 0.42 0.48 0.56 

DSO3 1.78 1.64 2.38 1.79 3.01 2.45 2.33 1.70 2.40 1.71 1.67 1.75 

The longest computation time is 3.01 seconds. Since the 
market bidding process takes place before the sub-hourly time 
interval begins, and each sub-hourly time interval is 5 minutes, 
this computation time is fast enough for real-time dispatch.  

On the other hand, if the original power flow constraints (19)
-(21) are directly applied in the MPCC model of DSO, the 
solver cannot find the solutions that satisfy all the constraints 
within the given time limit due to the nonconvexity of the 
constraints. Hence, the proposed MIQCP method is both 
reasonable and necessary for such a real-time application case.  

(2) DLMP and microgrid response 
The simulation span is set to one hour, and it’s evenly divided 

into 12 sub-hourly time intervals. The DLMP based on the 
MPCC model (11) for three DSOs and the associated DG 
generations are shown in Fig. 4. and Fig. 5, respectively: 

 
(a) 33-bus system 

 
(b) 13-bus system 

 
(c) 69-bus system 

Fig. 4. DLMP calculated by DSOs 

Fig. 4 shows that the DLMP received by each microgrid 
within the same DSO is different from each other. This is 
because each microgrid contains distributed generators (DG) 
with different generation costs, and the DLMP should be equal 
to the marginal cost of DG. The different compositions of 
microgrids may lead to various price signals. In addition, the 
DLMP and DG generations are time-varying. This is because 
the RES generation and demand of microgrids are fluctuating 
during real-time operation. In this simulation, the time 
resolution of wind speed, solar radiation and load is one minute. 
Hence the DLMP is adjusted accordingly to maintain the power 
exchange at PCC to a steady level. 

  
Fig. 5. DG generation under DLMP  

C. Observations from the simulation study 
The following observations can be made from our simulation:  
1) DLMP at marginal cost of DG: The DLMP equals the 

marginal cost of the DG. For instance, at the 11-14 minutes, the 
DLMP for MG2 in the 69-bus system reaches a spike of 
141.7$/MWh. MG2 has two MTs numbered as 16 and 17 in Fig. 
5. Their generation are 0.0535 MW and 0.1 MW, respectively. 
The marginal cost is 2 × 1040 ×0.0535 + 30.4 = 141.7$/MWh 
and 2 × 510 ×0.1 + 39.7 = 141.7$/MWh, which equal the DLMP.  

2) Constant DLMP: The DLMP for some microgrids remains 
almost constant for the entire interval, e.g., MG1 in the 13-bus 
system and MG3 bus in the 33-bus system. This is because DGs 
in these microgrids have relatively high marginal cost, and the 
DSO intends to reach the cleared bid with the lowest possible 
expense. As a result, the expensive DGs are not dispatched and 
the DLMP equals the b coefficient in the cost function, as can 
be deduced from Eq. (27).  

3) High DLMP: The DLMP for some MGs remains at a 
relatively high level, for example, MG5 in the 69-bus system. 
This is because the DGs in MG5 have a lower marginal cost, 
and it is dispatched for most of the time to reach the cleared bid, 
which is different from observation 2.  
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4) Demand response participation: In the above simulation, 
the demand response resources in microgrids have a relatively 
high dispatch cost compared with DGs and are barely 
dispatched by DSO. This is named as the base case. We further 
set the DR cost to 40$/MWh, which is at the same level with 
DG cost, and DR participation result is shown in Fig. 6: 
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(a) DR participation in 0-30 minutes 
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(b) DR participation in 31-60 minutes 

Fig. 6. DR participation in balancing market bidding 

Fig. 6 demonstrates the DR performance in microgrids in all 
three DSOs. In the base case when little DR is dispatched, the 
total net power exchange between MGs and the DSO is 37.56 
MW, from MGs to DSO. In the case when DR cost is decreased, 
the net power exchange increases to 40.15 MW. In this case, the 
cheaper DR is deployed for microgrids to make more profits by 
selling power back to the DSO.  

5) Power exchange following effect of microgrids: Since the 
goal of the DSO is to stimulate local microgrids to constantly 
provide the exact amount of power exchange that equals the 
cleared bid, the power exchange following effects of local 
microgrids is examined. Results show that δPRT 

PCC (t) remains 
around zero during the entire simulation hour for all three DSOs. 
This justifies that microgrids possess desirable response 
capability under proper price signals and are qualified to serve 
as power balancing resources for transmission systems. 

6) The performance of MLR: At the transmission-level 
market bidding stage, the DSO applies an MLR method to 
decide the optimal bidding price. In our simulation, this is 
realized via MATLAB toolbox regress. Fig. 7 demonstrates the 
bidding quantity submitted by DSOs and the final market 
cleared quantity for all 12 sub-hourly time intervals, where 
there is no gap between the two. Therefore, the MLR approach 
is very effective in helping DSOs to decide the optimal bidding 
price and to win the desired market bid. 

 

 

 
Fig. 7. Comparison of bidding quantity and market cleared quantity of DSO. 

7) Economic benefit of microgrids: As stated in Section II-B, 
microgrid operators are independent and profit-driven entities. 
They can only form a contract with a DSO when there is extra 
benefit earned by participating in the balancing market. Hence, 
we compare the total operating cost for one hour of each 
microgrid between participating in balancing market with the 
DSO and when standing alone. The results are shown in 
TABLE III. As observed from the table, by responding to the 
DLMP, microgrids can reduce their operation cost; some 
microgrids even receive a large amount of extra profits by 
selling power to the DSO (shown as negative cost). Therefore, 
we can conclude that microgrids can operate with better 
economy by providing balancing service to the transmission 
system. 

TABLE III COMPARISON OF MG OPERATION COST 
System Participating in  

Balancing market 
Standing 

alone 

DSO1 
(33-bus system) 

MG1 $90.09 $156.00 
MG2 $21.28 $161.21 
MG3 $62.10 $72.02 

DSO2 
(13-bus system) 

MG1 $35.33 $48.00 
MG2 $-100.87 $51.55 

DSO3 
(69-bus system) 

MG1 $154.45 $156.00 
MG2 $-259.26 $105.30 
MG3 $46.39 $49.42 
MG4 $70.19 $71.12 
MG5 $-160.09 $26.09 

 

VI. CONCLUSION 
In this paper, a hierarchical market framework is proposed to 

involve multiple microgrids with DSRs in real-time balancing 
market bidding. Microgrids can be driven by DLMPs sent from 
DSOs to provide the required amount of power in real-time 
operation via OPF calculation. At the distribution level of the 
proposed market framework, an MPCC model is established to 
combine the bi-level optimization of DSOs and microgrids into 
one problem for computational feasibility. At the transmission 
market bidding level, an MLR approach is applied to facilitate 
the DSO in optimal market bidding. The major conclusions 
from our simulation results are threefold: 
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1) Microgrids can follow the required power exchange 
profile with adequate accuracy and efficiency, which makes it 
a desirable balancing service provider to the transmission 
system in real-time scenario; 

2) The proposed MLR method is highly effective in 
optimizing the bidding decision of DSO in balancing market to 
win the desired bid, so it can be an ancillary tool for DSOs and 
market bidders in real-world applications; and 

3) It is highly profitable for DSR-driven microgrids to 
provide balancing services to the transmission systems, which 
quantitatively verifies that the proposed cause is beneficial to 
both local microgrids and transmission systems. 
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