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Abstract In this paper, adaptive robust control of
fully constrained cable-driven parallel robots with elas-
tic cables is studied in detail. A composite controller is
proposed for the system under the assumption of lin-
ear axial spring model as the dominant dynamics of
the cables and in presence of model uncertainties. The
proposed controller which is designed based on the sin-
gular perturbation theory, consists of two main parts.
An adaptive robust controller is designed to counter-
act the unstructured and parametric uncertainties of the
robot and a fast control term which is added to control
the longitudinal vibrations of the cables. Moreover, to
ensure that all cables remain in tension, the proposed
control algorithm benefits from internal force concept.
Using the results of the singular perturbation theory,
the stability of the overall closed-loop system is ana-
lyzed through Lyapunov second method, and finally,
the effectiveness of the proposed control algorithm is
verified through some simulations on a planar cable-
driven parallel robot.
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List of symbols

x The generalized coordinates vector
xd The reference trajectories vector
S The sliding surface vector
L2 The cables length vector
L1 The tensioned cables length vector
L0 The cables length vector at x = 0
q The vector of motors shaft position
ρ The upper bound of the robot uncertainties
Im The moments of inertia matrix of the motors
K The stiffness matrix of the cables
Fd The coefficient matrix of viscous friction
r The radius of the actuator drum
n The degrees of freedom of the robot
M The mass matrix of the robot
C The Coriolis and centrifugal terms
G The vector of gravity terms
Fs The vector of Coulomb friction terms
Td The vector of disturbance terms
J The Jacobian matrix of the robot
Q The vector of internal forces
F The Cartesian force control law
u The vector of motors input torque
ε The threshold width of the sliding surface
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K v The gain matrix of the fast control term
K D The gain matrix of the Cartesian control law
� The constant matrix of the sliding surface
� The constant matrix of the adaptation law

1 Introduction

Fully constrained cable-driven parallel robots (CDPRs)
have a restrained closed kinematic chain mechanism in
which the number of actuated cables is greater than the
degrees of freedom of robot [1]. Due to use of light-
weight cables in the structure of this class of robots,
the mass of the moving parts has been reduced con-
siderably and as a result, they are applicable for high
speed manipulation over a very large workspace [2–5].
However, cables are able to apply only tensile forces
and as a consequence, in order to avoid structural fail-
ures, control algorithms should be designed such that
the cables remain in tension for all maneuvers in their
workspace. This feature makes feedback control of the
fully constrained CDPRs more challenging than that of
the conventional parallel robots.

Several common control algorithms are adapted in
control of the CDPRs such as robust PID control [6],
feedback linearization theory [7–9], sliding mode con-
trol [10,11], Lyapunov-based methods [2,12], robust
iterative learning control [13], fuzzy plus PI control
[14], impedance control [15], optimal control [16],
adaptive control [17] and robust adaptive control [18–
20]. However, in these researches, it is assumed that
the cables are ideal massless and nonelastic elements.
It shall be noted that in practice, under the operational
tensile forces applied to the cables, they may behave as
elastic elements. This elasticity may cause unwanted
vibrations in the end-effector and degrades the perfor-
mance of the fully constrained CDPRs in applications
with high accuracy at high bandwidth [21]. For this rea-
son, the proposed control algorithms of CDPRs shall
efficiently damp the vibrations and provide suitable
tracking performance in practice, which is the target
of the proposed controller developed in this paper.

Inclusion of whole dynamic behavior of the cables
in the dynamic modeling of CDPRs is a complicated
and challenging task and even may be unnecessary. For
this reason, the only dominant dynamic behavior of the
cables is considered in the majority of cable robotic
applications such as in [21–23]. In these researches,
it is shown that a massless linear axial spring can be

used effectively to describe the dominant dynamics of
the cables in fully constrained CDPRs. Based on these
observations, linear axial spring is used in this paper to
model cable dynamics.

Considering the cable dynamic behavior in overall
dynamics of CDPRs introduces new challenges in the
control design and stability analysis. However, only
few researches focus on the control study of the fully
constrained CDPRs with elastic cables. In [24] cas-
cade control scheme is used to control the large adap-
tive reflector (LAR). In this scheme, while an inverse
dynamics controller (IDC) controls the pose of the end-
effector in the outer loop, a H∞ controller is used in the
inner loop to reduce the dynamic effects of the cables.
However, in this research, stability of the closed-loop
system has not been analyzed.

In [25] using linear axial springmodel for the cables,
a decentralized controller is designed in the cable length
coordinates for each of the actuated cables, and the
length of the cables which is simply measured by the
encoders is used in the feedback structure. This control
algorithm uses internal force concept and a fast control
term, and stability of the closed-loop system is analyzed
through Lyapunov secondmethod. However, due to the
inherent flexibility of the cables, using cable length in
the feedback control loop is not reliable in applications
with high accuracy at high bandwidth.

In order to remedy this shortcoming, in [26] a com-
posite control algorithm is proposed in the task space
coordinates. Control law of this algorithm consists of
a robust PID controller and a fast control term in order
to control the longitudinal vibrations of the cables.
Moreover, dynamics of the system is divided into slow
and fast subsystems and by using singular perturbation
approach, these subsystems are used in the controller
design procedure and stability analysis. Although this
control algorithm is computationally simple and it is
robust to modeling uncertainties, it may only operate
suitably in regulation problems, while it has limited
performance in tracking objectives due to the lack of
consideration of dynamic effects in the structure of the
controller.

In order to improve performance of fully constrained
CDPRs in tracking objectives, in [21] dynamic model
of robot is considered as an important component of
the proposed composite controller. However, in this
research, the proposed control algorithm is not robust
against themodeling uncertainties. It shall be noted that
in practice the kinematic and dynamic models of fully
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constrained CDPRs are contaminated with the unstruc-
tured and parametric uncertainties, and precise knowl-
edge of the models is unavailable. For this reason, pro-
posed control algorithm of fully constrained CDPRs
should not only be designed to efficiently damp vibra-
tions of the cables, it should be able to counteract the
modeling uncertainties and provides suitable tracking
performance in practice, as well.

The main goal of this paper is to propose a suitable
control algorithm in order to remedy mentioned short-
comings of the previous researches in the control of the
fully constrained CDPRs such as [6,17,20,21,25,26]
which have limited performance to control the longitu-
dinal vibrations of the cables in presence of the model-
ing uncertainties. To achieve this goal, a composite con-
trol algorithm is proposed. The important advantage of
the proposed composite controller in comparison with
the mentioned above control algorithm is its ability to
damp the longitudinal vibrations of the cables in pres-
ence of the unstructured and parametric uncertainties of
the CDPRs and provides suitable tracking performance
in practice, as well. This control algorithm consists of
an adaptive robust controller and a fast control term
to cope with the vibrations caused by cable elasticity.
Proposed adaptive robust controller is designed based
on the adaptation of the uncertainties upper bounds
according to the idea of Utkin [27]. This approach
does not require pre-knowledge of these upper bounds
as well as any linear regression representation for the
kinematic and dynamic models. Moreover, the internal
force concept is used in the proposed controller to pro-
vide positive tension of the cables. Using the results of
the singular perturbation approach, the stability of the
closed-loop system with proposed control algorithm is
analyzed through Lyapunov second method. Finally,
simulation results on a planar cable robot are given to
demonstrate the effectiveness of the proposed control
algorithm in practice.

The paper is organized as follows. InSect. 2 dynamic
model of fully constrainedCDPRswith elastic cables is
introduced. Section 3 focuses on the controller design
in which the proposed adaptive robust controller is
introduced and the adaptation law is defined based on
the adaptation of the uncertainties upper bounds. Then,
in Sect. 4 stability of the closed-loop system is ana-
lyzed through Lyapunov second method, and finally, in
Sect. 5 simulation results on a planar CDPR are dis-
cussed in detail.

2 Robot kinematics and dynamics

Under the assumption of linear axial spring as the dom-
inant dynamics of the cables, the dynamic model of a
fully constrained CDPR may be written as [21]:

M(x)ẍ+C(x, ẋ)ẋ + N(x, ẋ)+T d = JT K (L2 −L1)

(1)

Im q̈ + rK (L2 − L1) = u (2)

in which,

N(x, ẋ) = G(x) + Fd ẋ + Fs(ẋ), L2 = rq + L0

where x denotes the generalized coordinates vector
for pose of the end-effector, M(x) is the mass matrix
of the robot, C(x, ẋ) denotes Coriolis and centrifugal
terms, G(x) indicates the vector of gravity terms, Fd

denotes the coefficient matrix of viscous friction, Fs is
the Coulomb friction term, and Td denotes disturbance
whichmay represent any inaccuracy in dynamicmodel.
Furthermore, L2 denotes the vector of cable length,
which can be measured by the motor shaft encoder, L1

denotes the vector of the tensioned cable length, which
may be measured by the cable position transducers or
estimated by the solution of inverse kinematics prob-
lem of the robot, L0 denotes the vector of cable length
at x = 0, and J denotes the Jacobian matrix of the
robot, which relates ẋ to the derivative of the tensioned
cable length vector by L̇1 = J ẋ. Moreover, q denotes
the vector of the motor shaft position, Im is the coef-
ficient matrix of actuator moments of inertia, u is the
input torque vector, r is the radius of the actuator drum,
and K denotes stiffness matrix of the cables which is
large with respect to other system parameters and we
assume that it is of the order O(1/εp2) (εp is a small
scalar parameter).

As it is demonstrated in [6], the above robot dynamic
model has some useful properties such as positive def-
initeness of M(x) and skew-symmetricity of Ṁ(x) −
2C(x, ẋ). Some other important properties of the
dynamic terms may be listed as follows [6]:

⎧
⎪⎨

⎪⎩

m ≤ ‖M(x)‖ ≤ m

‖C(x, ẋ)‖ ≤ ξC‖ẋ‖
‖N(x, ẋ)‖ ≤ ξN1‖ẋ‖ + ξN2

(3)

123



R. Babaghasabha et al.

3 Control algorithm

In this section, a composite controller is proposed
in order to counteract the modeling uncertainties of
the robot and damp the longitudinal vibrations of the
cables. In our analysis, it is assumed that all terms
in the dynamic and kinematic model of the robot are
uncertain and the precise pre-knowledge about their
upper bounds is also unavailable in practice. With this
assumption, consider the following control law:

u = ur + K v(L̇1 − L̇2) (4)

where K v(L̇1 − L̇2) is a fast control term and K v is
a symmetric diagonal positive definite matrix whose
diagonal elements are in order of O(1/εp). Let us
define ur as follows:

ur = Ĵ
†
F + r Q (5)

where, Ĵ denotes estimated Jacobian matrix which
is inaccurate due to the uncertainty in the kinematic

parameters of the robot. Furthermore, Ĵ
†
denotes the

pseudo-inverse of Ĵ
T
, which is determined by Ĵ

† =
Ĵ(Ĵ

T
Ĵ)−1. The term Q may be physically interpreted

as the internal forces that span the null space of Ĵ
T
,

by which Ĵ
T
Q = 0. It shall be noted that the internal

forces are used in the controller structure in order to
keep all cables under tensionwithin thewrench-closure
workspace of the robot [6]. In this case, it is assumed
that the Jacobian matrix of the cable robot is nonsingu-
lar and positive internal forces can be produced to keep
the cables in tension at all times.

The term F in Eq. (5) is the Cartesian force control
law which is proposed as follows:

F = M̂eq ẍr + Ĉeq ẋr + N̂eq − K D tanh

(
S
ε

)

(6)

in which,

S = ˙̃x + �x̃ (7)

and

xr = xd − �

∫ t

0
x̃ dt, x̃ = x − xd (8)

where, S = [S1, . . . , Sn]T is sliding surface vector,
ε = diag (ε1, . . . , εn) is the threshold width on the
boundary layer of S, and it is chosen based on the
measurement noise amplitude, n denotes the degrees
of freedom of the robot, xd is a reference trajec-
tory which is twice continuously differentiable, � =

diag (�1, . . . , �n) is a positive definite matrix, and
K D = diag (kd1, . . . , kdn ) is a positive definite matrix
inwhich, kdi = ki+ρ̂i is the control gain and ρ̂i denotes
the uncertainties upper bound estimation. Let us pro-
pose the following adaptation law based on adaptation
of the uncertainties upper bound according to the idea
of Utkin [27].

˙̂ρi = �−1
i |Si |sgn

(
(|Si | − εi )ρ̂i

)
(9)

where,�i is the diagonal element of� = diag (�1, . . . ,

�n) which is a positive definite matrix. Moreover,
M̂eq , Ĉeq and N̂eq in Eq. (6) are available estimations
of the following dynamic matrices

⎧
⎪⎨

⎪⎩

Meq(x) = rM(x) + r−1 JT Im J

Ceq(x, ẋ) = rC(x, ẋ) + r−1 JT Im J̇

Neq(x, ẋ) = rN(x, ẋ)

(10)

Although these matrices are configuration dependent,
they have some useful propertieswhich are very helpful
in stability analysis of the proposed controller. Consid-
ering the properties of the robot dynamic model which
are denoted in (3), these properties can be listed as fol-
lows:

Property 1 The inertia matrix Meq(x) is symmetric
and uniformly positive definite. Furthermore, since the
Jacobian matrix of the robot is dependent on the end-
effector pose variable x by the bounded functions such
as sin(x) and cos(x), the inertia matrix Meq(x) is
bounded for all x by:

meq ≤ ‖Meq(x)‖ ≤ meq (11)

Property 2 The matrix Ṁeq(x) − 2Ceq(x, ẋ) is a
skew-symmetric matrix.

Ṁeq(x) − 2Ceq(x, ẋ) = r
(
Ṁ(x) − 2C(x, ẋ)

)

+ r−1
(
J̇
T
Im J − JT Im J̇

)

(12)

Both terms of the Eq. (12) is skew-symmetric and
therefore, the matrix Ṁeq(x) − 2Ceq(x, ẋ) is a skew-
symmetric matrix. This property implies that for all P
we have:

PT (
Ṁeq(x) − 2Ceq(x, ẋ)

)
P = 0 (13)
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Property 3 Upper bound of Ceq(x, ẋ) is independent
of x, and is a function of only ẋ as:

‖Ceq(x, ẋ)‖ ≤ ‖rC(x, ẋ)‖ + ‖r−1 JT Im J̇‖
≤ rξC‖ẋ‖ + r−1ξJ‖ẋ‖ = ξCeq‖ẋ‖ (14)

Property 4 The vector Neq(x, ẋ) is bounded by:

‖Neq(x, ẋ)‖ ≤ ξN1eq
‖ẋ‖ + ξN2eq

(15)

4 Stability analysis

In this section, stability of the closed-loop system with
the proposed control algorithm is analyzed through
Lyapunov second method. Recall the dynamic equa-
tions of the robot (1) and (2), and apply the composite
control law (4) from the previous section. This results
into:

M(x)ẍ+C(x, ẋ)ẋ+N(x, ẋ)+T d = JT K (L2 − L1)

(16)

Im q̈ + rK (L2 − L1) = ur + K v(L̇1 − L̇2) (17)

Define the variable z = K (L2 − L1) and as mentioned
earlier, it is assumed that K and K v are in order of
O(1/εp2) and O(1/εp), respectively. Hence, we can
write K = K 1/εp

2, K v = K 2/εp, where, K 1 and
K 2 are in ordre of O(1). By substituting z into (16)
and (17), and using L̈2 = r q̈, the closed-loop dynamic
system can be rewritten as the singular perturbed sys-
tem as follows:

M(x)ẍ + C(x, ẋ)ẋ + N(x, ẋ) + Td = JT z (18)

εp
2r−1 Im z̈+εpK 2 ż+rK 1z= K 1

(
ur − r−1 Im L̈1

)

(19)

In these equations, the variable z and ż may be con-
sidered the fast variables while the variable x and ẋ
can be interpreted as the slow variables. By using the
results of the singular perturbation theory [28], the elas-
tic closed-loop system (18) and (19) can be approxi-
mated by the quasi-steady state or slow subsystem and
the boundary layer or fast subsystem [21]. According
to the Tikhonov’s theorem [28], for t > 0, variables
z(t) and x(t) satisfy

z(t) = z̄(t) + η(τ ) + O(εp) (20)

x(t) = x̄(t) + O(εp) (21)

in which, τ = t/εp is the fast timescale, the over
bar variables represent the values of variables when

εp = 0, and η is the fast state variable which satisfies
the following boundary layer equation.

r−1 Im
d2η

dτ 2
+ K 2

dη

dτ
+ rK 1η = 0 (22)

Considering these results, the elastic system (18) and
(19) can be approximated up to O(εp) by

M(x)ẍ + C(x, ẋ)ẋ+N(x, ẋ)+T d = JT ( z̄ + η(τ ))

(23)

r−1 Im
d2η

dτ 2
+ K 2

dη

dτ
+ rK 1η = 0 (24)

where, z̄ is generated from substitution εp = 0 into
(19) as follows:

z̄ = r−1
(
ūr − r−1 Im ¨̄L1

)
(25)

Moreover, by substituting (25) into (23), and using
¨̄L1 = J ¨̄x + J̇ ˙̄x, we have:
(
rM(x̄) + r−1 JT Im J

) ¨̄x
+

(
rC(x̄, ˙̄x) + r−1 JT Im J̇

) ˙̄x
+ rN(x̄, ˙̄x) + rTd = JT (ūr + rη(τ )) (26)

According to (10), above equation can be rewritten in
the form of

Meq(x̄) ¨̄x + Ceq(x̄, ˙̄x) ˙̄x + Neq(x̄, ˙̄x) + rTd

= JT (ūr + rη(τ )) (27)

Note that, the Eq. (27) is called the quasi-steady-state
system. By considering these results, the dynamics of
the closed-loop system (16) and (17) may be divided
into two subsystems as follows:

Meq ẍ+Ceq ẋ+Neq+rTd = JT (ur +rη(τ )) (28)

r−1 Im
d2η

dτ 2
+ K v

dη

dτ
+ rKη = 0 (29)

It shall be noted that the controller gain K v can be
suitably chosen such that the boundary layer system
(29) becomes asymptotically stable. Let us rewrite Eq.
(29) as follows:

ḣ = Ah (30)

in which,

h = [
ηT η̇T

]T
, A =

[
0 I

−r2 I−1
m K −r I−1

m K v

]

(31)

Now, consider the following compositeLyapunov func-
tion candidate

V (t) = 1

2

(
ST Meq S + ρ̃T�ρ̃ + hTWh

)
(32)
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in which

W =
[
r2(K v + K ) r Im

r Im Im

]

, ρ̃ = ρ̂ − ρ (33)

where, ρ = [ρ1, . . . , ρn]T denotes the upper bound of
the robot uncertainties and ρ̂ = [ρ̂1, . . . , ρ̂n]T denotes
an estimation of ρ, which is adapted based on the adap-
tation law (9). According to the Schur complement,
W is a positive definite matrix if K v > Im . With
this assumption, the Lyapunov function candidate (32)
is also positive definite. Now, differentiate V (t) with
respect to time:

V̇ (t) = ST Meq Ṡ + 1

2
ST Ṁeq S + ρ̃T� ˙̃ρ + hTWḣ

(34)

Using (7), one can write:

V̇ (t) = ST Meq( ¨̃x + � ˙̃x)

+ ST
[
1

2
(Ṁeq − 2Ceq) + Ceq

]

S

+ ρ̃T� ˙̃ρ + hTWḣ (35)

Using skew-symmetricity property of Ṁeq(x) −
2Ceq(x, ẋ) and expanding the last term of (35) yields
to:

V̇ (t) = ST Meq( ¨̃x + � ˙̃x) + STCeq S + ρ̃T� ˙̃ρ
− r3ηT Kη − r η̇T (K v − Im) η̇ (36)

Substitute subsystem (28) into the above equation:

V̇ (t) = ST
[
JT ur + JT rη − (Ceq ẋ + Neq + rTd)

− Meq ẍd + Meq� ˙̃x + Ceq S
]

+ ρ̃T� ˙̃ρ
− r3ηT Kη − r η̇T (K v − Im) η̇ (37)

Differentiate xr twice with respect to time, and substi-
tute into Eq. (37):

V̇ (t) = ST
[
JT ur + JT rη − (Meq ẍr

+Ceq ẋr + Neq + rTd)
]

+ ρ̃T� ˙̃ρ − hT Zh

(38)

in which,

Z =
[
r3K 0
0 r(K v − Im)

]

(39)

Since K , K v and Im are positive definite matrices, the
last term of (38) becomes negative definite if K v > Im .
Now, substitute the control law from (5) into above
equation. This yields to:

V̇ (t) = ST
[
(JTĴ

†
)F + F − F + JT r Q

− Ĵ
T
r Q + JT rη − (Meq ẍr + Ceq ẋr

+ Neq + rTd)
]

+ ρ̃T� ˙̃ρ − hT Zh (40)

Apply Cartesian force control law (6):

V̇ (t) = ST
[

− K D tanh

(
S
ε

)

+ �
]

+ ρ̃T� ˙̃ρ
+ ST JT rη − hT Zh (41)

in which,

� = (M̃eq ẍr + C̃eq ẋr + Ñeq − rTd)

− (I − JT Ĵ
†
)F − ( Ĵ

T − JT )r Q

and

M̃ = M̂ − M, C̃ = Ĉ − C, Ñ = N̂ − N

where � is a measure of modeling uncertainty. It is
notable that the adaptation law (9) is designed to suit-
ably estimate the upper bound of � in real time in
order to accommodate the modeling uncertainties of
the robot. In presence of uncertainties both in the kine-
matic and dynamic terms, it may be assumed that the
disturbance terms, the estimated Jacobian matrix and
the internal forces may be bounded by the following
relations [6]:

‖( ĴT − JT )r Q‖ ≤ ξQ

‖(I − JT Ĵ
†
)F‖ ≤ ξ f ‖F‖, ‖Td‖ ≤ ξt

According to the above inequalities and the properties
of the robot dynamic terms, which are denoted in (11),
(14) and (15), it may be concluded that the upper bound
of the norm of � is generally a function of the sliding
surface variables S(x, ẋ) and time t as follows:

‖�‖ ≤
n∑

i=1

ρi (Si , t) (42)

Now, Equation (41) may be written as in two cases.
In the first case, it is assumed that the tracking errors
leave the boundary layer of the sliding surface inwhich,
|Si | ≥ εi . In this case, using the inequality (42), one
may rewrite the Eq. (41) as

V̇ (t) ≤
n∑

i=1

(
|Si |[−kdi + ρi ] + ρ̃i�i ˙̃ρi

)

+ ST JT rη − hT Zh (43)
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Substituting kdi = ki + ρ̂i and applying the adaptation
law (9) into above equation yield to:

V̇ (t) ≤
n∑

i=1

(−ki |Si |) + ST JT rη − hT Zh (44)

According to Rayleigh–Ritz inequality, above equation
can be expressed as

V̇ (t) ≤ −λmin(km)‖S‖ + rσmax(JT )‖S‖‖h‖
− λmin(Z)‖h‖2 (45)

where km = diag (k1, . . . , kn) denotes a positive def-
inite matrix, and λmin and σmax denote the smallest
eigenvalue and the largest singular value of the corre-
sponding matrices, respectively. Let us rewrite (45) as
follows:

V̇ (t) ≤ −dTCd + λmin(km)
(
‖S‖2 − ‖S‖

)
(46)

in which,

d = [‖S‖ ‖h‖]T ,

C =
[

λmin(km) 0.5rσmax(JT )

0.5rσmax(JT ) λmin(Z)

]

(47)

In order to make C positive definite , it is sufficient to
have

λmin(km)λmin(Z) > 0.25r2σ 2
max(J

T ) (48)

This condition is simply met by choosing appropriate
values for K v . By using Rayleigh–Ritz inequality, Eq.
(46) can be rewritten as following form:

V̇ (t) ≤ (λmin(km) − λmin(C)) ‖d‖2 − λmin(km)‖S‖
(49)

V̇ (t) is negative semi-definite if λmin(C) > λmin(km),
which is simplymet by choosing appropriate values for
K v . Therefore, the proposed composite controller can
stabilize the system and the trajectory tracking even-
tually converges to the boundary layer of the sliding
surface, in which |Si | < εi . In this case, by applying
the adaptation law (9), the derivative of the Lyapunov
function with respect to time given in (41) changes to:

V̇ (t) ≤
n∑

i=1

|Si |
[

−ki

( |Si |
εi

)

+ 2ρi

]

+ ST JT rη − hT Zh (50)

According to Rayleigh-Ritz inequality, (50) can be
written as

V̇ (t) ≤ −dT Bd + 2λmax(ρm)‖S‖ (51)

where, ρm = diag (ρ1, . . . , ρn) and

B =
[

λmin(km)λmax(ε) 0.5rσmax(JT )

0.5rσmax(JT ) λmin(Z)

]

(52)

The first term of (51) is negative definite if

λmin(km)λmax(ε)λmin(Z) > 0.25r2σ 2
max(J

T ) (53)

The above condition is simply met by choosing appro-
priate values for K v . Inequality (51) can be written as

V̇ (t) ≤ −λmin(B)‖d‖2 + 2λmax(ρm)‖d‖
≤ ‖d‖

[
− λmin(B)‖d‖ + 2λmax(ρm)

]
(54)

In this case, negative semi-definiteness of V̇ (t) is guar-
anteed with a level of conservatism, provided that,

‖d‖ >

(
2λmax(ρm)

λmin(B)

)

= δs (55)

Therefore, the proposed controller can stabilize the
system and the tracking error will remain uniformly
ultimately bounded (UUB). In this case, in order to
decrease the radius of ultimate steady-state tracking
error δs , it is sufficient to increase λmin(B), which is
simply met by choosing large enough values for K v .

5 Simulations

In order to verify the effectiveness of the proposed com-
posite control algorithm, a simulation study has been
performed on a fully constrained planar cable-driven
parallel robot as shown in Fig. 1a. This robot has three
degrees of freedom with one degree of actuator redun-
dancy. The position and orientation of the center of the
mass of the end-effector is denoted by P = [x, y, φ].
As it is shown in Fig. 1, Ai denotes the fixed attachment
points of the cables, Bi denotes the attachment points
of the cables on the end-effector which lie at the radial
distance of RB from center of the end-effector and xA
and yA are the length and width of the rectangle that
actuators have been attached on its vertices. Accord-
ing to the dynamic model described by (1) and (2) and
because of the planar motion, we have C(x, ẋ) = 0.
In this case, the dynamics formulation of this robot can
be written as [25]:

M(x)ẍ + N(x, ẋ) + Td = JT K (L2 − L1) (56)

Im q̈ + rK (L2 − L1) = u (57)

where

N(x, ẋ) = G(x) + Fd ẋ + Fs(ẋ)
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in which

M = diag (m,m, Iz), G = [
0 mg 0

]T

A4

A2A1

B3B4

B1B2

Li

αi

X

Y

A3

xA

yA
RB

(a)

(b)

Fig. 1 A fully constrained planar CDPR. a The schematics of
the robot. b Vector definitions for Jacobian derivation

where m is the mass and Iz is the moment of inertia
of the end-effector about its center of mass and g is
the gravity acceleration. Moreover, according to the
geometry of the robot as shown in Fig. 1b, the Jacobian
matrix of the robot can be expressed by [25]:

J =

⎡

⎢
⎢
⎣

S1x S1y E1x S1y − E1y S1x
S2x S2y E2x S2y − E2y S2x
S3x S3y E3x S3y − E3y S3x
S4x S4y E4x S4y − E4y S4x

⎤

⎥
⎥
⎦ (58)

in which the subscripts x and y denote the correspond-
ing component of the Si and Ei vectors as shown in
Fig. 1b. It shall be noted that since the robot is redun-
dantly actuated, the Jacobian matrix of the robot is a
non-square 4 × 3 matrix.

All nominal dynamic and kinematic parameters of
the robot and the constant parameters of the proposed
controller are given in Table 1. It shall be noted that
some of the robot parameters are considered uncertain,
in order to evaluate the effectiveness of the proposed
control algorithm against modeling uncertainties of the
robot in practice. The control algorithm is based on
(4), and it is assumed that the precise knowledge of
the kinematic and dynamic parameters of the robot is
unavailable.

The block diagram of the proposed composite con-
troller is shown in Fig. 2. In this scheme, inputs of
the proposed controller are the pose of the end-effector
x, its derivative ẋ and the measured cable length vec-
tor L2, while its outputs are the required torques. The
calculated torques are transformed through the inter-
nal force control block into the suitable torques u
which makes positive tension in the cables. Further-

Table 1 Dynamic and
kinematic parameters of the
planar robot and the
parameters of the proposed
controller

Parameter Symbol Value

Mass of the end-effector m 2.5 ± 0.5 kg

Moment of inertia of the end-effector Iz 0.03 ± 0.01 kgm2

Moment of inertia of the actuator Im (0.6 ± 0.1) kgm2

Radius of the actuator drum r 0.035 m

Horizontal distance of Ai xA 2 ± 0.2 m

Vertical distance of Ai yA 2 ± 0.2 m

Radial distance of Bi RB 0.15 m

Gain of the fast control term K v 600 I4×4

Constant matrix of the sliding surface � 10 I3×3

Constant matrix of the adaptation law � diag (25, 25, 5) × 10−2

Threshold width of the sliding surface ε diag (5, 5, 10) × 10−2
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Fig. 2 Block diagram of
the proposed composite
controller
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Fig. 3 Instability of the closed-loop system with the proposed
controller without K v(L̇1 − L̇2): Case A

more, the gain of the fast control term is chosen as
K v = 600 I4×4 to satisfy the stability conditions.

In order to show the effectiveness of the proposed
composite control algorithm, we consider two simula-
tion cases. In Case A, the proposed controller is sim-
ulated considering the stiffness matrix of the cables
as K = 1000I4×4. In this case, K is intentionally
chosen very low in order to demonstrate a high elas-
tic system and evaluate the effectiveness of the pro-
posed controller in term of damping of the inherent
cable vibrations. In Case B, a more realistic case study
with K = 10000I4×4 is considered in order to show
the closed-loop performance of the proposed controller
in terms of tracking the desired trajectories in practice.
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Fig. 4 Tracking performance of the robust PID controller, which
has been proposed in [26]: Case A

In Case A, the following smooth reference trajecto-
ries are considered in task space coordinates in X,Y
and φ directions.
⎧
⎨

⎩

xd = 0.4 + 2e−t − 2.4e−t/1.2

yd = 0.4 + 2e−t − 2.4e−t/1.2

φd = 0.2 sin (0.2π t)

In the first attempt of Case A, the control law (4)
is applied to the robot without the fast control term
K v(L̇1 − L̇2). In this case, the controller is similar to
the adaptive robust controller which has been proposed
in [20]. As illustrated in Fig. 3, the closed-loop system
with the proposed controller becomes unstable if the
fast control term is not applied to the robot. The main
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Fig. 5 Tracking performance of the proposed composite con-
troller in three directions: Case A

reason for instability is the divergence of the fast state
variables η(τ ).

In the second simulation of Case A, the proposed
composite control law (4) is applied to the robot and the
results of the simulation are compared with that of the
composite robust PID controller, which has been pro-
posed in [26]. Both of the controller uses the fast control
term K v(L̇1 − L̇2) in order to damp the longitudinal
vibrations of the cables. Figure 4 shows the simulation
results in tracking the smooth desired trajectories using
composite robust PID controller. Note that in these fig-
ures the desired trajectories are drawn in dashed line,
while the simulation results are drawn in solid line.As it
is shown in this figure, this controller is able to stabilize
the closed-loop system by using the fast control term.
Moreover, it is successful to regulate the pose of the
end-effector in X and Y directions and the steady state
errors are very small and in order of 10−3. However, it
has not the desirable performance in the reaching phase
to the desired value in X and Y directions, and further-
more, it cannot suitably track the sinusoidal trajectory
in φ directions. These shortcomings happen due to the
lack of consideration of dynamic effects in the struc-
ture of the controller. Moreover, some initially damped
transient oscillation of the fast state variables affects
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Fig. 6 Tracking errors of the end-effector; proposed composite
controller: Case A
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Fig. 7 Adaptation of the control gains in three directions; pro-
posed composite controller: Case A

on the trajectory tracking and significantly degrades
the performance of the controller [26].

Figure 5 verifies the effectiveness of the proposed
composite controller in terms of tracking of the smooth
reference trajectories in three directions. Although the
system is very elastic and uncertain, the proposed con-
troller is able to stabilize the close loop system and
provides suitable tracking performance with required
accuracy. As it is observed in Fig. 6, the pose errors
are very small and in order of 10−3m. Moreover, the
proposed controller by using adaptation of the control
gains is able to efficiently damp transient oscillation of
the fast variables, as well as, to accommodate the mod-
eling uncertainties. As it is shown in Fig. 7, when the
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Fig. 8 Cables forces; proposed controller: Case A

tracking errors slip away from the sliding surface, the
control gains are increasing up to a value large enough
to counteract the bounded uncertainties. As the trajec-
tories approach the sliding surface, the control gains
decrease, in order to useminimum tension in the cables.
Moreover, it is observed in Fig. 8, that all cables remain
in tension during the robotmaneuvers using the internal
force term Q in the structure of the controller.

In Case B with K = 10000I4×4, to evaluate track-
ing performance of the system with the proposed con-
troller, a more challenging circular trajectory with a
radius of 0.2m is considered while the end-effector

attempting to maintain φ = 0 at all time. In this case,
the following reference trajectories are considered,
{
xd = 0.2 cos (0.2π t)us(t − 2.5)
yd = 0.2 sin (0.2π t)

In the first attempt of Case B, the control law (4)
is applied to the robot without the fast control term
K v(L̇1 − L̇2). In this case, the controller is similar
to the adaptive robust controller which has been pro-
posed in [20]. Figure 9a, b show the simulation results
in tracking the desired circular trajectory. As it is shown
in these figures, the end-effector experiences undesir-
able vibrations and can not suitably track the desired
trajectories due to elasticity of the cables. In this case,
the oscillation of the fast state variables affects on the
adaptation process and significantly degrades the per-
formance of the controller.

In the second simulation of Case B, the proposed
composite control law (4) is applied to the robot and
the results of the simulation are compared with that
of the composite nonlinear controller, which has been
proposed in [21]. Figure 10a, b show the tracking per-
formance of the desired circular trajectory using com-
posite nonlinear controller proposed in [21]. As it is
observed in these figures, this controller is able to effi-
ciently damp the vibrations of the cables by using the
fast control term. However, it has not the desirable per-
formance in tracking the circular trajectory due to the
negative effects of the modeling uncertainties on the
controller performance. Moreover, uncertainties of the

−0.2 −0.1 0 0.1 0.2 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Tracking Performance in XY Plane

X (m)

Y
 (m

)

Desired
Actual

0 2000 4000 6000 8000 10000 12000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Actual and desired orientation about Z direction

Time (ms)

φ 
(r

ad
)

Desired
Actual

(a) (b)

Fig. 9 Tracking performance of the proposed composite controller without K v(L̇1 − L̇2): Case B. a Tracking of the circular trajectory
in XY plane. b Orientation of the end-effector

123



R. Babaghasabha et al.

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Tracking Performance in XY Plane

X (m)

Y
 (m

)

Desired
Actual

0 2000 4000 6000 8000 10000 12000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10−3 Actual and desired orientation about Z direction

Time (ms)

φ  
(r

ad
)

Desired
Actual

(a) (b)

Fig. 10 Tracking performance of the composite nonlinear controller, proposed in [21]: Case B. a Tracking of the circular trajectory in
XY plane. b Orientation of the end-effector
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Fig. 11 Tracking performance of the proposed composite controller: Case B. a Tracking of the circular trajectory in XY plane. b
Orientation of the end-effector

kinematic parameters in Jacobian matrix may change
the direction of the resultant internal forces and may
consequently degrade the performance of the controller
[17].

Figure 11a, b verifies the effectiveness of the pro-
posed composite controller in terms of tracking of the
desired circular trajectory. As it is seen in these fig-
ures, the proposed controller is able to efficiently damp
vibrations of the cables, as well as, to accommodate the

modeling uncertainties and it provides suitable track-
ing performance with required accuracy. The tracking
errors in X and Y direction are shown in Fig. 12a. As
it is shown in this figure, the proposed controller with
adaptation of the control gains, can successfully track
the circular trajectory with accuracy of order 10−3m.
Moreover, it can be seen in Fig. 12b that all cables
remain in tension during this motion.
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Fig. 12 Results of the proposed composite controller: Case B. a Tracking errors of the end-effector. b Cables forces

Based on these simulation results, the prescribed
uniformly ultimately bounded tracking error for the
proposed control algorithm is verified in all three direc-
tions. Furthermore, it may be concluded that the pro-
posed adaptive robust controller can achieve suitable
tracking performance in practice for different desired
trajectories, while it efficiently damp vibrations of the
cables. As a result, it might be considered as a suitable
solution for different cable robotic applications. It shall
be noted that, in the design procedure of the proposed
composite controller, it is assumed that the Jacobian
matrix of the cable robot is nonsingular and positive
internal forces can be produced to keep the cables in
tension at all times. However, in a CDPRwith very low
cable stiffness, this assumption is not valid anymore at
whole workspace of the robot. In this case, the gain K v

of the fast control term can not be chosen very high in
order to damp the large longitudinal vibrations of the
cables because it may limit the reachable workspace
of the robot. Future research will be dedicated to study
this subject.

6 Conclusions

This paper addresses adaptive robust control of fully
constrained cable-driven parallel robots with elastic
cables. It is assumed that the linear axial spring model

may suitably describe the effects of dominant dynamics
of the cables. with this assumption, a composite con-
troller is designed to counteract the bounded uncertain-
ties and damp undesirable vibrations of the cables due
to cables elasticity, simultaneously. In addition, it keeps
all cables in tension during the motion in the wrench-
closure workspace of the robot. Using the results of
singular perturbation theory, it is proven that the pro-
posed control algorithm is efficiently able to stabilize
the closed-loop system in the sense of uniformly ulti-
mately bounded. Finally, the suitable tracking perfor-
mance of the proposed controller is verified through
several simulations on a fully constrained planar cable-
driven parallel robot.
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