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Abstract—In this paper, a Distribution STATic COMpensator
(DSTATCOM) is proposed for compensation of reactive power
and unbalance caused by various loads in distribution system. An
evaluation of three different methods is made to derive reference
currents for a DSTATCOM. These methods are an instantaneous
reactive power theory, a synchronous reference frame theory,
and a new Adaline-based algorithm. The Adaline-based algorithm
is an adaptive method for extracting reference current signals.
These schemes are simulated under MATLAB environment using
SIMULINK and PSB toolboxes. Simulation and experimental re-
sults demonstrate the performance of these schemes for the control
of DSTATCOM.

Index Terms—Adaline, Distribution STATic COMpensator
(DSTATCOM), instantaneous reactive power (IRP) theory, load
balancing, reactive power compensation, synchronous reference
frame (SRF) theory.

I. INTRODUCTION

N PRESENT day distribution systems, major power con-

sumption has been in reactive loads, such as fans, pumps,
etc. These loads draw lagging power-factor currents and there-
fore give rise to reactive power burden in the distribution sys-
tem. Moreover, situation worsens in the presence of unbalanced
loads. Excessive reactive power demand increases feeder losses
and reduces active power flow capability of the distribution sys-
tem, whereas unbalancing affects the operation of transform-
ers and generators [1]. A Distribution STATic COMpensator
(DSTATCOM) can be used for compensation of reactive power
and unbalance loading in the distribution system [2]. The
performance of DSTATCOM depends on the control algorithm
used for extraction of reference current components. For this
purpose, many control schemes are reported in literature, and
some of these are instantaneous reactive power (IRP) theory,
instantaneous symmetrical components, synchronous reference
frame (SRF) theory, current compensation using dc bus regula-
tion, computation based on per phase basis, and scheme based
on neural network techniques [3]-[11]. Among these control
schemes, IRP and SRF theories are most widely used.

In this paper, a DSTATCOM is controlled using IRP and
SRF theories for compensation of reactive power and unbal-
ance, and these methods are compared with a new Adaline-
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Fig. 1. Basic circuit diagram of the DSTATCOM system.

based control algorithm. This Adaline-based control algorithm
is simple and needs less computational efforts [12]-[14]. A
fast adaptive linear element (Adaline)-based reference current
estimator extracts real positive sequence current component
without any phase shift. The estimation of reference currents
through Adaline utilizes a least-mean squares (LMS) algorithm
for the calculation of weights [13]. A MATLAB-based simu-
lation study is presented for these three control techniques of
DSTATCOM. Simulation results demonstrate the effectiveness
of these three control algorithms of DSTATCOM for compen-
sation of reactive power and unbalanced loading. Hardware of
the DSTATCOM is also developed to validate Adaline-based
control scheme with a self-supported dc bus using a dSPACE
DS1104 R&D controller.

II. SYSTEM CONFIGURATION

Fig. 1 shows the basic circuit diagram of a DSTATCOM
system with lagging power-factor loads connected to a three-
phase three-wire distribution system. Lagging power-factor
load is realized by star-connected resistive—inductive (R-L)
load. An unbalanced load is realized by disconnecting load
from phase a using a circuit breaker. A three-phase voltage
source converter (VSC) working as a DSTATCOM is real-
ized using six insulated-gate bipolar transistors (IGBTs) with
antiparallel diodes. At ac side, the interfacing inductors are
used to filter high-frequency components of compensating
currents.

0278-0046/$25.00 © 2009 IEEE
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Fig. 2. Block diagram of the reference current extraction using IRP theory.

III. CONTROL ALGORITHMS

For reactive power compensation, a DSTATCOM provides
reactive power as needed by the load, and therefore, the source
current remains at unity power factor (UPF). Since only real
power is being supplied by source, load balancing is achieved
by making the source reference current balanced. Reference
source current used to decide the switching of the DSTATCOM
has real fundamental frequency component of the load current,
which is being extracted by these techniques.

A. IRP Theory

IRP theory was initially proposed by Akagi [3]. This the-
ory is based on the transformation of three-phase quantities
to two-phase quantities in a—3 frame and the calculation of
instantaneous active and reactive power in this frame [3], [4].
A basic block diagram of this theory is shown in Fig. 2.
Sensed inputs v,, vp, and v, and iy, i1p, and iz are fed to
the controller, and these quantities are processed to generate
reference current commands (2}, %, and 4), which are fed to
a hysteresis-based pulsewidth modulated (PWM) signal gener-
ator (shown in Fig. 2) to generate final switching signals fed to
the DSTATCOM; therefore, this block works as a controller for
DSTATCOM shown in Fig. 1.

The system terminal voltages are given as
Vg = Vi sin(wt)
vp = Vi sin(wt — 27/3)
Ve = Vi sin(wt — 47/3) (1)
and the respective load currents are given as
= Z Ipan sin {n(wt) — Oun}
iLb = Z ILbn sin {n(wt — 271'/3) — 01,,,,}
ine =Y Ipensin{n(wt—4m/3) = Ocn} . 2)

In a—b—c coordinates, a, b, and c axes are fixed on the same
plane, apart from each other by 27r/3. The instantaneous space
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vectors v, and iy, are set on the “a” axis, and their amplitude
varies in positive and negative directions with time. This is true
for the other two phases also. These phasors can be transformed
into a—/f3 coordinates using Clark’s transformation as follows:

[:ﬂ: ;[é %ﬁ __%?2] z’b 3)
BR R A -

where « and [ axes are the orthogonal coordinates. Con-
ventional instantaneous power for three-phase circuit can be
defined as

D = Vala + vgig 5)
where p is equal to conventional equation
P = Vgl + Vpip + Vcle. (6)
Similarly, the IRP is defined as
q = —vgiq + Valg. @)

Therefore, in matrix form, instantaneous real and reactive
powers are given as

Kl ®

The a—(3 currents can be obtained as

io| _ 1 |va —vg||P
Lﬁ] A [”ﬂ Va } [‘1] ®
where

2 2

A = vy + vg. (10)
Instantaneous active and reactive powers p and g can be
decomposed into an average (dc) and an oscillatory component

p=p+p

1=7+q 1)

where p and § are the average (dc) part and p and q are the oscil-
latory (ac) part of these real and reactive instantaneous powers.
Reference source currents are calculated to compensate the
IRP and the oscillatory component of the instantaneous active
power. In this case, the source transmits only the nonoscillating
component of the active power. Therefore, the reference source
currents iy, and i35 in a—( coordinate are expressed as

Z::a — l Va —Up D .

i 3 A |vg g 0
These currents can be transformed in a—b—c quantities to
find the reference currents in a—b—c coordinates using reverse

12)
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Fig. 3. Block diagram of the reference current extraction using SRF theory.
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where i is the zero sequence component, which is zero in
three-phase three-wire system.

13)

B. SRF Method

SRF theory is based on the transformation of currents in
synchronously rotating d—q frame [5], [6]. Fig. 3 shows the
basic building blocks of this theory. Sensed inputs v, v, and v,
and 714, i1p, and i are fed to the controller. Voltage signals
are processed by a phase-locked loop (PLL) [15] to generate
unit voltage templates (sine and cosine signals). Current signals
are transformed to d—q frame, where these signals are filtered
and transformed back to abc frame (i, %54, and ), Wwhich are
fed to a hysteresis-based PWM signal generator [12] to generate
final switching signals fed to the DSTATCOM; therefore, this
block works as a controller for DSTATCOM shown in Fig. 1.

Similar to the p—q theory, current components in a—f3 coor-
dinates are generated, and using 6 as a transformation angle,
these currents are transformed from a—( to d—q frame defined

as (Park’s transformation)
iqg| | cosf sinf | |iq
ig| | —sin® cosf| |ig|"
SREF isolator extracts the dc component by low-pass filters
(LPFs) for each 74 and 7, realized by moving averager at 100 Hz.

The extracted dc components i4q. and i4q. are transformed
back into a—4 frame using reverse Park’s transformation
sin 0

iozdc — iddc
i8dc cosf | |igdc |
From these currents, the transformation is made to obtain

three-phase reference source currents in a—b—c coordinates us-
ing (13). Reactive power compensation can also be provided by

(14)

cos
—siné

15)
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Fig. 4. Block diagram of the reference current extraction using Adaline-based
theory.

keeping i, component zero for calculating the reference source
currents.

C. Adaline-Based Control Algorithm

The basic theory of the proposed Adaline decomposer has
been based on LMS algorithm and its training through Adaline,
which tracks the unit vector templates to maintain minimum
error. A block diagram of Adaline-based control scheme is
shown in Fig. 4. The basic concept of theory used here can be
understood by considering the analysis in single-phase system,
which is given as under.

The supply voltage may be expressed as

vs = V1 sinwt. (16)

Sensed load current that is made up of active current (i;), re-
active current (z;) for positive sequence, and negative sequence
current (i~) can be decomposed in parts as

ip =) s i 17)

The control algorithm is based on the extraction of current
component in phase with the unit voltage template. To estimate
the fundamental frequency positive sequence real component
of load current, the unit voltage template should be in phase
with the system voltage and should have unit amplitude, and it
must be undistorted. For the calculation of templates, voltage
at the point of common coupling is sensed. Sensed voltages
are filtered through a bandpass filter, and their amplitude is
computed. Sensed three-phase voltages (as shown in Fig. 1) are
divided by this amplitude to get three-phase voltage templates
(uq, up, and u,. shown in Fig. 4).

An initial estimate of the active part of current for single
phase can be chosen as

iy =Wy X u, (18)
where weight (W) is estimated using Adaline technique.
The weight is variable and changes as per the load cur-
rent and magnitude of phase voltage. This scheme for esti-
mating weights corresponding to the fundamental frequency
real component of current (for three-phase system), based
on LMS-algorithm-tuned Adaline, tracks the unit voltage
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templates to maintain minimum error {ir,(x) — Wp()Up(k) }-
The estimation of weight is given as per the following
iterations [13]:

W,

k1) = Wotky 1 {0y — W) Upr) } Upry-  (19)

The value of 1 (convergence coefficient) decides the rate of
convergence and the accuracy of estimation. The practical range
of convergence coefficient lies in between 0.1 and 1.0. Higher
values of 7 provide fast convergence toward the final value
but at the expense of some accuracy. The selected value of 7
here is considered as 0.2 to achieve high level of accuracy at
the reasonable dynamic response. Three-phase reference source
currents corresponding to positive sequence real component of
load current may be computed as

. _ + . _ . _ +
iy = W tpa = W;upb The= W e (20)

Wi = (Wit Wi + W) /3 @1

For the estimation of reference currents, weights are aver-
aged to compute an equivalent weight for positive sequence
current component in the decomposed form. The averaging
of weights helps in removing the unbalance in the current
components.

These three-phase reference source currents are fed to the
hysteresis-based PWM current controller to control the source
currents to follow the reference source currents in UPF mode of
operation.

These currents are considered as the reference source cur-
rents iyer (15,45, and i%,), and along with the sensed source
currents iact (isq,isp, and is.), these currents are fed to a
hysteresis-based PWM current controller to control the source
currents to follow these reference currents. Switching signals
generated by PWM current controller control the source cur-
rents close to the reference current. Switching signals are
generated on the following logic, where hb is the hysteresis
band around the reference current 7..f.

1) If (iact) > (iret + hb), the upper switch of the leg is ON,
and the lower switch is OFF.

2) If (iact) < (iret — hb), the upper switch of the leg is OFF,
and the lower switch is ON.

This current control results in the control of the slow varying
source current (as compared to DSTATCOM currents) and
therefore requires less computational efforts. Moreover, this
scheme automatically compensates the computational delay
caused by the processor.

D. PI Controller for Maintaining Constant DC Bus Voltage
of DSTATCOM

The operation of DSTATCOM system requires ac mains to
supply real power needed to the load and some losses (switch-
ing losses of devices, losses in reactor, and dielectric losses
of dc bus capacitor) in the DSTATCOM. Therefore, the refer-
ence source current, used to decide switching of DSTATCOM,
has two components: One is the real fundamental frequency
component of the load current, which is being extracted using
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Fig. 5. MATLAB-based model of DSTATCOM system.

the p—q theory, SRF theory, or Adaline technique, and another
component, which corresponds to the losses in DSTATCOM, is
estimated using a proportional—integral (PI) controller over the
dc bus voltage of the DSTATCOM.

To compute the second component of the reference active
current, a reference dc bus voltage (v.) is compared with the
sensed dc bus voltage (v4.) of DSTATCOM. A comparison of
the sensed dc bus voltage to the reference dc bus voltage of VSC
results in a voltage error, which, in the nth sampling instant, is
expressed as

Udcl(n) = U:jlc(n) — Vdce(n)- (22)

This error signal vqc(n) i8 processed in a PI controller, and

the output {I,,(,) } at the nth sampling instant is expressed as

Iy = Iptn-1) + Kpac {Vaci(n) — Vaci(n-1) } + KidcVdei(n)
(23)

where Kq. and Kq. are the proportional and integral gains of
the PI controller.

The output of this PI controller accounts for the losses in
DSTATCOM, and it is considered as the loss component of the
current. This component (/,(,,)) can be added with the average
real power for controlling DSTATCOM by p—q theory. If the
control is facilitated by SRF theory, the output of PI regulator
can be added with d-axis component of the current signal. For
controlling DSTATCOM by Adaline, the output of PI controller
is added with the equivalent source currents.

IV. MATLAB-BASED MODEL OF DSTATCOM SYSTEM

Fig. 5 shows the basic simulation model of DSTATCOM
system that correlates to the system configuration shown in
Fig. 1 in terms of source, load, DSTATCOM, and control
blocks. The considered load is a combination of resistance and
inductance connected in series for each phase. The load is star
connected with a rating of 32 kVA at 0.8 pf. This DSTATCOM
model is simulated with the above described p—q, SRF, and
Adaline-based theories. Fig. 6(a)-(c) shows the simulation
models for these theories that are inconsistent with the control
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Fig. 6.  MATLAB-based model of current extraction using (a) IRP, (b) SRF,
and (c) Adaline-based theories.

schemes shown in Figs. 2-4. The model is assembled using
the mathematical blocks of SIMULINK block set. Simulation
is carried out in continuous mode at a maximum step size of
1 x 1076 with odel5s (stiff/NDF) solver.

V. RESULTS AND DISCUSSION

The performance of DSTATCOM is studied for all three
methods of control techniques, and the following observations
are made based on these results.

A. Control of DSTATCOM by IRP Theory

Fig. 7 shows the dynamic performance of a DSTATCOM
using the IRP-theory-based current extractor. The considered
load is resistive—reactive at 0.8 lagging power factor. The load
has been increased from 16 to 32 kVA at 0.12 s, and unbalance
is introduced at 0.18 s. After 0.24 s, the dynamics are shown
in reverse sequence. A delay in compensation can be seen
from source current waveforms. This delay is due to the LPF
used for filtering power signals. Moreover, IRP theory uses
voltage signals to compute instantaneous active and reactive
powers; any distortion and unbalance in voltage will lead to
the inaccurate calculation of reference source currents, which
should contain only real fundamental frequency component of
the load current.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 7, JULY 2009
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Fig. 7. Dynamic performance of a DSTATCOM controlled using IRP theory.
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Fig. 8. Dynamic performance of a DSTATCOM controlled using SRF theory.

B. Control of DSTATCOM by SRF Theory

Fig. 8 shows the performance of a DSTATCOM controlled by
SRF theory. Simulation is carried out for similar load changes
and unbalanced conditions as of the previous case. The effect
of delay due to LPF used for filtering signals in d—q frame
can be seen in the extracted reference current waveform. The
generation of voltage templates (sine and cosine) plays an
important role in the calculation of reference source currents.
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Fig. 9. Dynamic performance of a DSTATCOM controlled using Adaline-

based current extractor.
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Fig. 11. Recorded waveforms of a-phase voltage, source, load currents, and
dc bus voltage of DSTATCOM with unbalanced load (scales: 150 V/div for
channel 1, 20 A/div for channels 2 and 3, and 300 V/div for channel 4).

Fig. 12. Recorded waveforms of a-phase voltage and three-phase load cur-
rents (scales: 150 V/div for channel 1 and 20 A/div for channels 2, 3, and 4).

-Agilent Technologies

Time (sec.)

Fig. 10. Dynamic performance of a DSTATCOM with self-supporting dc bus

controlled using Adaline-based current extractor.

These templates are generated using PLL, and therefore, the
tuning of PLL is crucial. The operation of PLL is slow, and it

also imposes some amount of delay in computation.

C. Control of DSTATCOM by Adaline-Based Algorithm

The performance of DSTATCOM is shown in Fig. 9, using
Adaline technique. It can be observed that DSTATCOM with
Adaline technique is able to meet the load changes within one

Fig. 13. Recorded waveforms of a-phase voltage and three-phase source
currents (scales: 150 V/div for channel 1 and 20 A/div for channels 2, 3, and 4).

cycle of sine wave. An advantage of the Adaline-based extractor
is that it requires less computational efforts, and therefore, the
implementation of this technique is much simpler. Moreover,
there is an inherent linearity in Adaline, which makes it a fast
technique. The speed of convergence can be varied by varying
the value of 7 (convergence coefficient).

The operation of DSTATCOM with self-supporting dc bus
is shown in Fig. 10. Its dc-bus voltage (vq.) is maintained at
200 V. The effect of a load change at t = 0.2 s can be seen on
the dc bus voltage. Three-phase load currents corresponding to
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Fig. 14. Harmonic spectra of (a) a-, (b) b-, and (c) c-phase source currents.

a, b, and ¢ phases are increased from 4.76, 3.17, and 5.90 A
to 6.53, 5.61, and 8.12 A, respectively. The three-phase source
currents are well balanced at 4.3, 4.25, and 4.33 A for light load
condition and 6.50, 6.45, and 6.51 A under increased load con-
dition for a, b, and c phases, respectively. Furthermore, some
second harmonic oscillations in the dc bus voltage are observed
in case of unbalancing of the load. The action of PI controller
is observed to maintain the dc-bus voltage of DTATCOM at the
reference value within a couple of cycles of ac sine wave.

D. Experimental Results

A hardware implementation of an Adaline-based control
scheme of the DSTATCOM system is realized using dSPACE
DSP processor. Two-phase load currents (i¢z, and irp) and
source currents (is, and i4) are sensed using Hall effect current
sensors (LEM CT-100S). Three voltage sensors (LEM CV3-
1500) are used to sense phase-a, phase-b, and dc link voltages.
The software implementation of control algorithm is realized
in MATLAB blocks in DSP dSPACE to generate the switching
signals for IGBTs of DSTATCOM. These switching signals are
fed to SKHI 22B drivers, which finally provide the gate voltage
at the gate terminal of IGBT module (SKM 100GB128DN). For
implementation, the control algorithm is run at a fixed step size
of 78.125 us. Interfacing filter inductor value is chosen to be
3 mH, and the value of dc bus capacitor is kept at 1650 uF.

The Adaline-based control scheme of the DSTATCOM is
tested at unbalanced lagging power-factor load. The selected
load is a three-phase star-connected resistive load with a three-
phase star-connected inductive load connected in parallel to
each other. The line-line voltage is kept at 110 V (rms), and the
dc bus is maintained at 200 V. Three-phase load currents are
unbalanced with values of 5.03, 6.04, and 7.76 A in a, b, and
c phases, respectively. The compensation of this load is
achieved using DSTATCOM with self-supporting dc bus.
Fig. 11 shows the performance of DSTATCOM through the
waveforms of a-phase voltage, source current, load current,
and dc bus voltage. It can be clearly observed from this figure
that the compensation for reactive power is provided by the
DSTATCOM. Fig. 12 shows the a-phase voltage and three-
phase unbalance load currents. Fig. 13 shows the a-phase volt-
age and three-phase source currents. The amplitude of a, b, and
c phase currents are 5.65, 5.68, and 5.59 A, respectively. The
harmonic spectra of three-phase source currents are shown in
Fig. 14. The total harmonic distortion (THD) of a, b, and ¢
phase source currents are 2%, 2%, and 1.9%, respectively. The
THD of source currents is well below the limit of 5% prescribed

(b)

(©)

D‘D 7 KUAR - FUNDAMENTAL

Fig. 15. Recorded three-phase power supplied by the source, showing

line-line voltage (V) and c-phase current.

Fig. 16. Dynamic performance of DSTATCOM under load change (scales:
150 V/div for channel 1, 10 A/div for channels 2 and 3, and 300 V/div for
channel 4).

-Agilent Technologies

in IEEES19 standard. The measured active and reactive power
is shown in Fig. 15, which depicts that the source currents
are at UPF and negligible reactive power is consumed from
the source. These figures depict that the source currents are
balanced and consist of only real fundamental frequency part
of load currents. The dynamic performance of DSTATCOM is
shown in Fig. 16 with a step change in the load. a-phase voltage,
source current, load current, and dc bus voltage are shown in the
figure. A phase load current is changed from 4.76 to 6.53 A. A
three-phase load current change is in accordance with the simu-
lation results shown in Fig. 10. It may be observed from this fig-
ure that the self-supporting dc bus of DSTATCOM is achieved
for the satisfactory dynamic performance of the system.

VI. CONCLUSION

IRP and SRF theories and Adaline technique have demon-
strated the satisfactory behavior of DSTATCOM. An Adaline-
based control technique has resulted in considerable improved
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performance of the DSTATCOM. The Adaline-based technique
utilizes LMS algorithm to calculate the weights, and these
calculations are performed online; therefore, this algorithm is
able to extract the reference source currents in varying load
conditions, which is not possible with other neural-network-
based current extraction techniques. Simulated and test results
have verified the effectiveness of these control algorithms.
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