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Abstract—Integration of renewable distributed generation
(DG) units into distribution networks is gaining widespread
popularity. However, uncertainties in generation availability as-
sociated with renewable DG units pose a major challenge. These
uncertainties should be properly addressed to ensure acceptable
system performance and improve customer side reliability. In this
paper, the reliability assessment of distribution systems embedded
with renewable DG sources has been carried out giving emphasis
to system uncertainties and optimal restoration strategies. The
uncertainties associated with the power output from renewable
resources, time varying load demand, stochastic prediction errors,
and random fault events have been accounted in the restoration
optimization formulation for reliability evaluation. A parameter
free particle swarm optimization (PSO) technique is applied in
the paper to address the complexity involved in the formulation.
Moreover, a problem specific encoding scheme is also proposed
in conjunction with PSO to ensure optimality.

Index Terms—distribution system reliability, distributed gen-
eration, wind power generation, solar power generation, load
restoration, and optimization.

I. INTRODUCTION

Renewable distributed generation (DG) units, such as solar
photovoltaic (PV) systems and wind turbine generators (WTG)
are seen to be increasingly embedded into existing power
systems. Such units not only provide support to power systems
under normal operating conditions but also provide reliability
benefits to both customers and utilities during contingencies.
However, system operating constraints, uncertainties in gener-
ation availability for renewable DG systems, and time-varying
load demand are major barriers in their effective integration.

Some of the pioneering research on reliability evaluation
of power generation and transmission systems containing
renewable generating systems have been reported in [1], [2].
The reliability impacts of major smart grid resources such as
renewables, demand response and storage have been critically
reviewed in [3]. Reliability issues of small isolated power
systems containing PV, WTG and energy storage have been
explored in [4]. The reliability assessment of distribution
systems with optimal placement of conventional DG units
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(such as diesel generators and gas turbines) have been elab-
orated in [5] by considering the reliability worth. In [6],
clustering algorithms are used to determine specific system
states considering the correlation between hourly load demand
and power generation. Although some of the probabilistic
analytical methods based on clustering techniques for system
reliability assessment are efficient, these methods may not
be suitable for modeling the behavior of transitional nature
of different system states in successive time intervals due to
the loss of inherent features of the time correlated system
variables.

In terms of restoration strategies, a decentralized multi-
agent system based service restoration of radial distribution
networks is presented in [7] but the renewable DG units and
associated uncertainties are not considered. A mixed-integer
second-order cone programming formulation is proposed in
[8] for service restoration of a distribution network with DG
units however, the uncertainties associated with the renewable
resources are not considered. In [9], a mixed-integer non-
linear programming model is presented for the optimal restora-
tion/maintenance of the switching sequence of an unbalanced
three-phase distribution system without the consideration of
renewable energy resources. A new methodology to include
cold load pickup events in the reliability assessment of power
distribution systems is proposed in [10] that only considers the
demand uncertainty. A methodology based on multi-objective
evolutionary algorithms is presented in [11] for minimizing
computational burden associated with system restoration prob-
lem with the conventional power sources.

In comparison to extensive reliability studies carried out
for power generation and transmission systems, limited work
exists in relation to distribution networks inclusive of re-
newable DG units in the literature. In [12], the reliability
benefits associated with adding DG units to a distribution
system are investigated by simulating restoration procedures
following events associated with faults. In [13], the probability
of successful islanding operation with renewable DG units
has been assessed where the impact of the islanded system
reliability has also been considered with regard to overall
system reliability evaluation. The customer reliability for a
microgrid with DG units has been assessed in [14]. In [15],
the impacts of optimal DG placement on system reliability and
efficiency are investigated using particle swarm optimization
(PSO) by considering comprehensive factors such as customer
types, daily and monthly load patterns, and weather conditions.
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Analytical expressions for finding optimal size and power
factor of different types of DG units to minimize losses in
primary distribution systems are proposed in [16]. In practice,
conventional distribution systems are designed with sufficient
margin between the supply capacity and maximum load de-
mand to supply customers without considering any support
from DG units. Generally, constant load demand and constant
DG output are used for short term restoration. Such con-
sideration may mask system uncertainties and impact on the
switching actions, resulting in unrealistic solutions. As a result,
fewer customers will be restored or the restored customers
may experience additional interruptions due to the mismatch
between actual generation and load demand. Furthermore,
the impact of uncertainties in renewable power generation
prediction on system reliability has not been recognized since
prediction analysis has not been thoroughly carried out to deal
with short term planning. It is of utmost interest to quantify
the impact of prediction error in distribution system reliability
evaluation associated with renewable DG units. The major
contributions of the paper are as follows:

1) A novel restoration strategy is proposed using the Heuris-
tic model, where the islanding features and network
reconfiguration options are effectively combined to reduce
the loss of load (load shedding) and achieve fast service
restoration. Moreover, the presented restoration strategy
is based on the uncertain circumstances that may arise
in different practical situations. In order to generate real
conditions for the validation of the proposed strategy,
auto-regressive probabilistic models incorporating statis-
tical characteristics of the uncertain parameters such as
the load demands, the intermittent generation and the
random fault events are embedded into the proposed
restoration strategy. Furthermore, the stochastic prediction
errors of these uncertain parameters are incorporated
in the proposed strategy to adjust the global range of
uncertainty.

2) The proposed strategy uses time sequential Monte Carlo
simulations to effectively estimate system reliability under
wider range of system conditions. Furthermore, a tuning
parameter free TRIBE PSO algorithm is proposed to
solve the presented combinatorial, nonlinear constrained
optimization problem thereby ensuring convergence to
either optimal or near optimal feasible solutions.

3) A novel encoding strategy with a dynamic selection
scheme rather than the traditional binary encoding scheme
is embedded into the proposed tuning parameter free
TRIBE PSO algorithm to reduce the search space and
hence, the computational burden to achieve fast and
effective solution.

It is to be noted that an islanded operation of a practical
distribution network in the presence of uncertain generation
and loads of different steady state and dynamic properties
is challenging and exhibits certain limitations as outlined in
[17]. However, if the necessary conditions [18] related to
the islanded operation of distribution nertwork, especially in
accordance with the IEEE Std. 1547, 2003-2013 are properly
implemented then the islanding features can be utilized for

improving the reliability of supply.
The paper is organized as follows: Section II presents an

optimization formulation and a solution algorithm for supply
restoration considering time-varying generation and load pat-
terns. Probabilistic models for addressing system uncertainties
are introduced in Section III. The time sequential Monte Carlo
approach for reliability evaluation of DG systems is presented
in Section IV. The simulation results are reported in Section V,
and Section VI summarizes the broad outcomes of the work
described in the paper.

II. NETWORK RESTORATION OPTIMIZATION

The network restoration encompassing DG units is a com-
binatorial, nonlinear constrained optimization problem. Due
to the complexity of the formulated problem, a parameter
free PSO based algorithm is employed to derive the optimal
solution. In order to reduce the search space and to improve the
quality of the solution, the restoration optimization problem is
encoded in PSO incorporating a dynamic selection scheme.

A. Mathematical Formulation of Restoration Process

In this paper, the minimization of total customer interruption
duration is considered as an objective in the optimization
formulation of the restoration process involving nonlinearities
associated with time varying load and generation. If the
customer interruption duration of each fault event is mini-
mized, then the customer side supply reliability in terms of
system average interruption duration index (SAIDI) can be
consequently minimized. The associated objective function
f , which will result in optimal switch configuration, can be
expressed as:

f = min
T∑
t=1

N∑
n=1

(1−Bt,n)Ln (1)

where, T is the total interruption hours due to a system fault
event, N is the total number of system nodes in the out-of-
service areas, Bt,n is the binary status of load point n at time
t (Bt,n = 1 represents the restored load point), and Ln is
the number of customers at load point n. The total number of
switches in the out-of-service areas can be represented by M .
Accordingly, SW is a M × T binary matrix representing the
status of switches at each time step, which can be expressed
as:

SW =


SW1,1 SW1,2 · · · SW1,T

SW2,1
. . . . . .

...
... · · · SWm,t

...
SWM,1 SWM,2 · · · SWM,T

 (2)

For system restoration encompassing DG units, the con-
straints involved in the optimization formulation are briefly
discussed below.

1) System Topology Constraint: The relationship between
the two nodes in a distribution system can be depicted as
shown in Fig. 1. A load point (i.e. the child node) can possibly
be restored only if the associated candidate node (i.e. the
parent node) is restored and the switch between the load point
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Fig. 1. Relationship of two nodes

and the candidate node is closed. The above constraint can be
expressed as:

Bj,t ≤ SWj,tBi,t (3)

where, SWj,t is the binary status of the jth switch at time
step t.

2) DG Capacity Limit: The total loads restored by a DG
unit should not exceed its available capacity in each time step
t:

PDGt ≥
∑
n∈βt

Bt,nPt,n (4)

where, βt is a set of load points restored by the DG unit at
time step t, and Pt,n(kW ) is the required capacity at load
point n including its associated loss component in time t. It is
important to note that in case, the available DG power output is
in excess with respect to the load, then restoration is performed
by capping the DG output at a level of the restored load.

3) Capacity Limit of a Feeder Section: The capacity flow
Sfdt(kV A) of a feeder section in each time step t, which
is calculated using probabilistic power flow detailed in [19],
should not exceed its rated capacity Sfdr(kV A):

Sfdt ≤ Sfdr (5)

4) Time Constraint for Manual Switching: The time dif-
ference between two sequential manual switching operations
should not be less than the minimum time tmin that is needed
to operate the corresponding manual switches:

SWm,t1 = SWm,t2 ∀ |t1 − t2| < tmin (6)

5) System Energization Constraint: It is expected that the
re-energized load point at an earlier stage should not be de-
energized again at a later stage. In this paper, the system
energization constraint involving binary variables has been
used for ensuring certainty of supply to support requisite load
in the restoration period:

Bt,n ≥ Bt−1,n (7)

B. Encoding Process for Optimization Algorithm

As described in the last subsection, the variables for the
restoration problem are the status of all switches in the out-of-
service areas during the interruption period. A restoration area
under investigation, including M switches with an interruption
period of T hours, will have a solution space of 2MT possible
combinations if a binary encoding scheme is used. However,
only a few combinations may result in feasible solutions due
to the problem constraints.

Rather than using a traditional binary encoding scheme,
a dynamic selection scheme is proposed in this paper. The

problem variables in the matrix SW can be transferred into a
vector that includes two sets of integer variables given as:

X =

{x1, . . . , xi, . . . , xT︸ ︷︷ ︸
X1

}, {xT+1, . . . , xT+N︸ ︷︷ ︸
X2

}

 (8)

The first set has T integers representing the decision of
either restoring or not restoring additional customers. The sec-
ond set has N integers indicating the selection of the candidate
restoration nodes. Since the original problem variables are
converted to a vector with T + N integers, the integers can
be mapped into meaningful decisions by applying a proposed
transformation function given as:

yi = 1 + xi − floor(
xi
ai

) · ai (9)

where, xi is the ith integer input, floor is a function for
deriving a nearest integer that is less than or equal to xi/ai,
ai is the number of alternative choices or number of candidate
nodes, and yi is the ith selection guide indicating the priority
index of the nodes to be restored.

By applying (9) from two different sets of a vector, the
selection guide yi can be derived as follows:

1) Selection Guide with Integers from the First Set: From
the first set of vectors X1, it is known that there will be always
two choices (ai = 2, ∀i = 1, . . . , T ) associated with the issue
of either restoring or not restoring additional customers. By
applying (9) with ai = 2, it can be calculated that yi will
always be either 1 or 2 associated with the value of xi in
the first set X1. In such case, yi = 1 denotes restoration
of additional customers and yi = 2 symbolizes maintaining
current system status.

2) Selection Guide with Integers from the Second Set:
An example feeder shown in Fig. 2 is used to illustrate
the capability of the dynamic selection scheme for deciding
the candidate restoration nodes and generation of a unique
restoration sequence list based on the integers in the second
set of the vector. It can be observed in Fig. 2 that the load
points 1-8 are located at downstream of the fault and a DG
unit can be used as a back-up supply to restore a limited
number of interrupted load points. Eight integers are randomly
selected by the solution algorithm to form the second set of
the vector X2 = [5 8 10 12 15 18 28 77]. These integers need
to be dynamically mapped to a selection decision to restore
the nodes sequentially.

In Fig. 2, it can be seen that node 1 will be the first
candidate node if the DG starts restoring the interrupted area.
By applying (9) with x = 5 (i.e. first element of the second
set, X2) and a = 1, the solution y = 1 can be established.
This means that the first candidate node, which is the only
candidate node is selected in the restoration sequence list.

DGMain supply
12

3

7

4

6 5

89

Fig. 2. An example feeder
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Fig. 3. An example feeder with two DGs

Similarly, node 2 can be added to the restoration sequence
list. Subsequently, nodes 3, 7 and 5 are the potential candidate
nodes that can be added to the restoration sequence list ranked
based on the higher to lower load demand. By applying (9)
with a = 3 and the 3rd integer x = 10, the solution y = 2
can be established. This means that the second candidate node
(node 7) is selected. Once a node gets added to the restoration
sequence list, it will be removed from the candidate node list
and the associated load points will be added to the candidate
node list. In this case, after adding node 7 to the restoration
sequence list, nodes 3, 8, and 5 will be in the candidate node
list and the selection depends on the value of the 4th integer.
By applying an iterative process, all nodes will be added to the
restoration sequence list. It should be noted that the number of
choices will be dynamically changed. By using the proposed
dynamic selection scheme, a meaningful selection can always
be derived. Finally, a unique restoration sequence of [1 2 7
3 4 8 5 6] can be generated with the given integers and the
corresponding selection guide will be [1 1 2 1 1 1 1 1].

3) Selection Guide for a Multi-generator System: In case
of multiple DGs, the proposed dynamic selection scheme is
applied to each DG and a unique restoration sequence is
determined. If the multiple restoration sequences overlap, then
the restoration sequence is determined by considering these
DG units as a single unit and the biggest DG node as a
candidate node. It is to be noted that the infeasible restoration
sequences with higher fitness values are discarded by the
TRIBE PSO algorithm. As an instance, for the system in
Fig. 3, the restoration sequence of DG1 is [1 2 7 3 4 8 5
6 16] and DG2 is [9 10 13 14 11 12 15 8 7 2]. Since the
restoration sequences are overlapping, the bigger DG node,
i.e., DG1 at node 1, is considered as a candidate node and
combined restoration sequence is determined that can be [1 2
7 3 4 8 5 6 15 10 13 14 11 12 9 16 17]. In case, the DG
units have independent restoration sequences, then every DG
will be restoring a unique island in the distribution network.
By using the proposed dynamic selection scheme subject to
the constraints related to optimization formulation, a feasible
solution can be ensured.

C. Restoration Optimization using TRIBE PSO

The restoration problem in this paper is solved by using a
PSO variant based on TRIBE concept [20] as illustrated in Fig.
4. The advantage of this algorithm over other intelligent-based
algorithm is that it does not require any algorithmic parameters

while a sufficiently good solution can still be reached [20]. The
basic elements of TRIBE PSO include particles, informers,
and tribes. The particle is comprised of problem variables
X , representing a potential solution in a problem space. The
informer is a particle, which can inform its best solution to
another specified particle. The tribe is a group of particles,
which shares the information inside the group. The TRIBE
PSO exploration mechanism including swarm initialization,
particle movement and swarm adaptation are described below:

1) Initialization of Swarm: The TRIBE PSO initially has
only a single tribe with only one particle. It dynamically adds
or deletes particles according to the self-adaptive rules and the
performance of the swarm (as discussed in step 3). A random
feasible solution X encoded in Section II.B can be used to
initialize the optimization algorithm.

2) Particle Movement: The TRIBE PSO increases the par-
ticle memory to maintain the last two fitness values. Accord-
ingly, based on the fitness improvement, the performance of
each particle can be categorized into three classes: bad, neutral,
and good. The particles labeled ‘bad’ will be updated using a
strategy known as ‘simple pivot strategy’ whereas the particles
in the other two classes will be updated using a ‘noisy pivot
strategy’.

In the simple pivot strategy as illustrated in Fig. 5(a), the
best positions of a particle Xp and its informer Xq are used to
guide the move of the particle p. Accordingly, the new value
of the ith problem variable xp,i,k in vector Xp at iteration k
can be obtained using:

xp,i,k =
(r1Rpq + xp,i,k−1)F (Xp)

F (Xp) + F (Xq)

+
(r2Rpq + xq,i,k−1)F (Xq)

F (Xp) + F (Xq)
(10)

where Rpq = |xp,i,k−1−xq,i,k−1|, r1 and r2 (r1, r2 ∈ [−1, 1])
are two random numbers, and F (·) is the objective function

Generation of restoration strategies based on proposed encoding 
process and TRIBE PSO exploration mechanism including swarm 

initialization, particle movement, and swarm adaptation

A system fault event causing a major emergency

Evaluation of customer interruption duration (fitness value) based 
on estimated generation and load demand incorporating:

• Network topology and renewable DG configuration

• Predicted wind speed, solar radiation, and load profiles 
generated by probabilistic models

Update restoration strategy

Stopping criterion satisfied?

Obtain optimal restoration strategy

Yes

No

Fitness value improved?
No

Yes

Fig. 4. Restoration optimization using TRIBE PSO
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xp,i,k-1 xq,i,k-1

Rpq RpqRpq

xp,i,k

Possible movement

(a)

xp,i,k-1 xq,i,k-1

Rpq RpqRpq

xp,i,k

Possible movements

x'p,i,k

(b)

Fig. 5. Movement of a particle by using (a) simple pivot strategy, (b) noisy
pivot strategy

for evaluation of the fitness value with respect to a candidate
solution.

The noisy pivot strategy as shown in Fig. 5(b) begins in
a manner similar to the simple pivot strategy. If noisy pivot
strategy is applied, additional Gaussian noises G(0, σpar) with
zero mean and standard deviation of σpar are added to the
problem variables as given in (11). In this case, the particles
may jump out of the surrounding areas and explore a different
problem space.

x′p,i,k = xp,i,k(1 +G(0, σpar)) (11)

3) Swarm Adaptation: A swarm adaptation strategy is used
to add or remove particles or tribes based on the performance
of the tribes and particles. The adaptation will be carried out
when a finite number of iterations have been carried out using
TRIBE PSO. The number of iterations Niter can be derived
as:

Niter =
1

2
Npar(Npar − 1) (12)

where Npar is the total number of particles in the whole
swarm.

III. MODELING OF SYSTEM UNCERTAINTIES

In order to conduct realistic assessment of distribution
system reliability associated with the integration of renewable
DG units, the uncertainties in terms of time-varying load
demands, intermittent generation, stochastic prediction errors,
and random fault events need to be modeled accurately. This
section introduces probabilistic models that address the above
mentioned uncertainties.

A. Autoregressive (AR) Model

The variation of load demand, wind speed and solar ra-
diation presents certain levels of correlation with respect
to time. The time series forecast errors for these variables
also exhibit autocorrelation features. The modeling of time
correlated variables can be achieved by adopting an AR model
[21] given as:

Et = crEt−1 + rg
√

1− c2r (13)

As indicated in (13), the value of Et for time step t is
related to its previous value Et−1 for time step t − 1 with a
correlation factor cr and an additional standard Gaussian noise
rg . The correlation factor used in (13) can be obtained using
the historical measured data.

B. Probability Transformation

Although modeling of the time correlated variables can be
achieved using the AR model, the statistical characteristics of
these variables may not be correctly represented if only an
AR model is used. It is noticed that the time series variables
generated by (13) follows the standard Gaussian distribution
(zero mean and standard deviation of unity) due to the standard
Gaussian noises. However, the variables such as wind speed
and solar radiation typically follow the Weibull distribution
and Beta distribution respectively with different means and
deviations in different seasons, even over days and hours [21],
[22]. Therefore, it is necessary to transfer the series of values
which are generated by (13) to a new series of values that
follow the respective probability distribution functions (PDFs).
The transformation can be done by using the cumulative
distribution functions (CDF) expressed as:

u = CDFold(Et|µ, σ) (14)

E′t = CDF−1new(u|µ′, σ′) (15)

In (14), the cumulative probability u of a value Et is calculated
with a given mean µ and a standard deviation σ. Function
CDFold describes the statistical characteristics of the values
generated by the AR model. In (15), the calculated cumulative
probability u is substituted into a new cumulative distribu-
tion function CDFnew with new references of mean µ′ and
standard deviation σ′. The CDFnew describes the statistical
features of the transferred values. The transferred values can
be derived using the inverse of CDFnew. The transferred value
E′t will follow new specified probability distribution functions
derived based on the historical measured data.

C. Modeling of Time Series Variables

By using the AR model as a basic model for generation of
time dependent values and applying the probability transfor-
mation method for derivation of the statistical characteristics,
the time series variables with uncertainties can be simulated. In
this subsection, the statistical characteristics of these variables
are introduced and the corresponding cumulative distribution
functions are also discussed.

1) Load Demand: The probability distribution of load
demand follows the Gaussian distribution function [23]. With
a mean µl and a standard deviation of σl derived based on the
historical data, the hourly load demand Pt,n(kW ) of a load
point n at time t can be obtained as:

Pt,n =

{
Pt,n :

1

σl
√

2π

∫ Pt,n

−∞
e
−(z−µl)

2

2σ2
l dz = ut,n

}
(16)

where, ut,n is the cumulative probability of the values gener-
ated by the AR model.

2) Wind Power Generation: In this paper, it is assumed that
the wind speed follows the Weibull distribution function [22].
Hence, wind speed vt(ms−1) at time t can be derived as:

vt =

{
vt :

∫ vt

0

cb−czc−le−(
z
b )
c

dz = ut

}
(17)

where the Weibull parameters b = µw/Γ(1 + c) and c =
(σw/µw)−1.086 can be estimated using the Gamma function
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Γ(·), the mean µw, and standard deviation σw related to wind
speeds in the observation period.

Associated with the simulated wind speed, the power gen-
erated by individual WTG units can be estimated using the
WTG power curve.

3) Solar Power Generation: In [21], it has been indicated
that the major cause of uncertainty in solar radiation over a PV
array is the stochastic cloudy weather conditions. The cloudy
weather condition can be simulated using a Beta distributed
clearness index. The solar radiation absorbed by a PV array
Hpv(t)(kWm−2) can be estimated based on the accurately
calculated extra-terrestrial solar radiation Hex(t)(kWm−2)
and the clearness index kt:

Hpv(t) = ktHex(t) (18)

In (18), the Hex(t) can be derived based on the geographical
information of the site and the orbit of the earth. The clearness
index kt can be generated using Graham’s algorithm [21].
Once the solar radiation is simulated, the power generated
by a PV array having a rated capacity of Prs(kW ) and rated
solar radiation of Hr(kWm−2) can be calculated [24] using:

Ppv(t) =
Hpv(t)

Hr
Prs (19)

4) Load Demand Prediction: The prediction error in load
demand can be simulated using a Gaussian distribution func-
tion while considering the time correlation feature [23]. The
load demand prediction P ′t,n(kW ) can be simulated using the
actual load demand Pt,n(kW ) and the Gaussian distributed
prediction errors εl(t,n) as:

P ′t,n = Pt,n(1 + εl(t,n)) (20)

5) Wind Power Generation Prediction: In this paper, the
probabilistic wind power generation prediction is modeled
using a Beta distribution function [25]. Similar to other time
series variables, the characteristics of the prediction is carried
out using the AR model and the probability transformation
approach. Therefore, the wind power generation prediction can
be given as:

P ′wd(t) =

{
P ′wd(t) : B

∫ P ′wd(t)

0

zg−1(z′)f−1dz = ut

}
(21)

where, P ′wd(t)(kW ) is the predicted wind speed, the physical
parameters B(g, f) = Γ(g + f)/Γ(g)Γ(f), z′ = 1 − z, g =
µa(1−µa−σ2

a)/σ2
a and f = g(1−µa)/µa can be calculated

using the statistical mean µa and standard variance σa of a
given data set [21].

For wind power generation prediction, the hourly actual
wind power generation can be used as the mean value for
deriving the Beta parameters. The standard deviation σa be-
tween the actual wind generation and the prediction can be
derived using a polynomial function [25]:

σa =
√
µa(1− µa)(k1µa − k2µ2

a) (22)

where k1 and k2 are the approximation parameters.

6) Solar Power Generation Prediction: Similar to the wind
power generation prediction, the solar power generation pre-
diction could also be simulated using a Beta distribution
function as given in (21) and (22). The only difference is
that the accuracy of the solar power generation prediction
is affected by weather conditions [26]. Since the weather
conditions can be simulated using the clearness index, the
standard deviation of the solar power prediction error can be
also formulated using (22) incorporating clearness index as an
input. With this formulation, it is anticipated that prediction
quality will be relatively high for a very cloudy day (kt = 0)
or a very sunny day (kt = 1). The forecast error will be large
on a partly cloudy day [26].

7) Modeling of System Fault Events: In this paper, the
failures of system components such as feeder line sections,
transformers, switches, fuses, and DG units are considered and
used for simulating the fault events. The component reliability
parameters including mean time to failure (MTTF) (h) and
mean time to repair (MTTR) (h) are used as inputs for the
logarithm distribution function [27] given as:

UP = −MTTF × ln(r1) (23)

DOWN = −MTTR× ln(r2) (24)

where r1 and r2 are two random numbers with standard
uniform distribution, UP is the number of hours that a system
component is in healthy state, and DOWN is the number of
hours that a system component is in failure state.

IV. RELIABILITY ASSESSMENT PROCEDURE

The reliability assessment of a distribution system con-
taining renewable DG units is carried out by addressing
the system uncertainties. The time sequential Monte Carlo
simulation technique is used in this paper to evaluate system
reliability indices. One of the major advantages of Monte
Carlo simulation over analytical evaluation methods is that
the former technique can efficiently estimate system reliability
under wide range of conditions by assessing only limited
number of sampled system states. This feature makes Monte
Carlo simulation suitable for reliability estimation of large-
scale distribution systems with the consideration of various
system uncertainties. In this paper, the time sequential Monte
Carlo simulation procedure includes the following steps:

Step-1: Generate time-varying load demand, wind and solar
power generation, and the corresponding prediction values for
a specified period based on the historical measured data and
the related DG configuration using (13)-(22).

Step-2: Generate fault events on various system components
of the feeder using (23) and (24).

Step-3: If a failure on a system component is detected,
the system interruption duration caused by this failure will
be evaluated considering the specified time to identify, isolate
and repair the faulty component.

Step-4: The restoration procedure will be executed within
the simulated time. It is assumed that the forecasts for load
demand, wind power generation, solar generation are available
for the interruption hours. The predicted values are used as
inputs to determine the restoration strategy.
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Fig. 6. 33 bus distribution system

Step-5: It is assumed that the available DG units can
be reconnected to the network without any delay after the
isolation of a fault. If all the system loads can be fully restored
through the substation and DG units immediately after the
fault isolation, then the restoration optimization will not be
performed. In case of insufficient DG capacity to restore
all load points within the islands, the proposed restoration
optimization will be conducted to minimize the customer
interruption duration by selecting optimal restoration sequence
and coordinating the switching operations.

Step-6: Simulate the restoration process using the derived
restoration strategy with the actual load demand, and avail-
able DG power to calculate the actual customer interruption
duration due to the system failure.

Step-7: Determine the system reliability in terms of SAIDI
and SAIFI after the completion of requisite simulation time
period.

Step-8: The yearly average values of SAIDI and SAIFI
and associated probability distributions are obtained after
completing the simulation studies for a stipulated number of
years.

V. CASE STUDIES

The MATLAB based simulation studies are conducted for a
33-bus system [28] shown in Fig. 6 and an 11 kV distribution
feeder, derived from the realistic network of New South Wales
(NSW) electricity distribution system in Australia [29], shown
in Fig. 8.

A. Implementation of the proposed Restoration Strategy

1) The 33-bus distribution system: In this section, the ef-
fectiveess of the proposed restoration strategy is demonstrated
on the 33-bus system with DGs as shown in Fig. 6. The
system data is taken from [28]. Each branch is equipped
with a remotely controllable switch that can be operated
automatically in the service restoration process. The control
switches are depicted as a number in Fig. 6. The voltage at
the substation bus is set to 1.0 p.u. The lower and upper voltage
values of all the load buses are set to 0.9 p.u. and 1.05 p.u.,
respectively. Please note all the loads are modelled as constant
power loads. The elapsed time of the out-of-service restoration

 

 

 

 

 

 

 

Fig. 7. Convergence curve for a fault in the branch 2-3

TABLE I
OUTPUT INFORMATION OF DGS

Case DG bus PDG(kW) QDG(kVar)

I

7 350 169.5
10 400 193.7
14 450 217.9
33 500 242.2

II

4 600 261.5
16 800 388.7
26 600 0
31 1000 0

time in the practical implementation contains three parts:
calculation time, switching actions time and communication
time. The communication time should be less than 10 s from
control system to terminal, and the switching action time
should be less than 0.04 s.

The locations and capacities of DGs operating in the PQ
mode (negative load) are given in Table I, while the restoration
results are given in Table II. Considering the fault branch 2-
3 in Case I for example, the optimum restoration sequence
calculated by the proposed restoration strategy taking bus 33
as a candidate node is [33 32 36 31 18 17 16 15 14 13 12 11
10 9 8 7 6 21 5 4 3 23 24 25 22 20 19 2]. As a result of the
restoration sequence, the corresponding switches to be turned
on are 33 and 36, while the switches to be turned off are 25
and 30. The switching times, lost loads and the computation
times are given in the Table II. The convergence curve of the
proposed restoration strategy for the fault in branch 2-3 in
Case-I is shown in Fig. 7.

The proposed restoration strategy is compared with the
mixed-integer second order cone programming (MISOCP) [8],
harmony search algorithm (HAS) [30], interval algorithm (IA)
[31], point estimation method (PEM) [32], IA plus proposed
restoration strategy (IA+PRS) [33], PEM+PRS [33], stochastic
response surface method plus PRS (SRSM+PRS) [33] and
SRSM plus restoration strategy (SRSM+RS) [34]. The results
show that the proposed strategy is efficient in comparison with
the other restoration strategies.
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TABLE II
RESTORATION RESULTS FOR 33-BUS SYSTEM

Case Fault Branch Method Switches On Switches Off Load Shedding Switching Lost Loads Computational Time
Nodes Times (%) (Seconds)

I

2-3 MISOCP [8] 33, 36 26, 31 27, 28, 29, 30, 31 4 15.88 –

Proposed 33, 36 25, 30 26, 27, 28, 29, 30 4 12.67 9.06

4-5 MISOCP [8] 36, 37 - - 2 0 -

Proposed 33, 37 - - 2 0 9.54

13-14 MISOCP [8] 36, 37 - - 2 0 -

Proposed 33, 34, 35 - - 3 0 9.56

2-19 MISOCP [8] 35 - - 2 0 -

Proposed 33,35,36 - - 3 0 9.25

9-10
MISOCP [8] 35, 37 - - 2 0 1.14

HSA [30] 34, 35, 37 12 - 4 0 2.93

Proposed 33, 35, 37 - - 3 0 10.67

26-27
MISOCP [8] 35, 37 - - 2 0 1.14

HSA [30] 34, 35, 37 12 - 4 0 2.93

Proposed 35, 37 - - 2 0 7.13

II

4-5

IA [31] 33, 34, 35, 37 9, 14, 28, 31 32, 33 8 9.69 15.3

PEM [32] 33, 34, 35, 36, 37 9, 14, 28, 31 - 9 0 8.5

IA+PRS [33] 33, 34, 35, 37 9, 14, 28, 31 32, 33 8 9.69 15.3

PEM+PRS [33] 33, 34, 35, 36, 37 9, 14, 28, 31 - 9 0 8.5

SRSM+PRS [33] 33, 34, 35, 36, 37 9, 14, 28, 31 - 9 0 18.2

SRSM+RS [34] 33, 34, 35, 36, 37 9, 14, 28, 31 - 9 0 18.7

Proposed 33, 35, 36, 37 8, 25, 32 - 7 0 8.53

8-9, 19-20

IA [31] 33, 35, 37 14, 27 15-18, 32, 33 5 17.78 14

PEM [32] 33, 35, 37 14, 27 15-18, 32, 33 5 17.78 9.6

IA+PRS [33] 33, 35, 37 14, 27 15-18, 32, 33 5 17.78 15.4

PEM+PRS [33] 33, 35, 36, 37 27, 31, 16, 14 15, 16 8 4.85 11.4

SRSM+PRS [33] 33, 35, 36, 37 27, 31, 15, 14 16 8 1.62 22.7

SRSM+RS [34] 33, 35, 37 27, 14 16, 17, 18, 32, 33 5 14.54 19.5

Proposed 33, 35, 36, 37 20, 24, 32 - 7 0 9.01

2) The 86-bus distribution system: The simulation studies
were conducted for an 11 kV distribution feeder based on
a realistic network from NSW, Australia as shown in Fig. 8
[29]. It is assumed that the entire distribution feeder of the test
system is 35 km long with 42 manual switches, 3 reclosers, and
60 load points and hence 60 distribution transformers, which
are individually protected by fuses. It is assumed that the failed
component can be identified within an hour and each manual
switching can be performed within an hour provided sequential
switching is conducted within the minimum time specified
by the distribution network service provider. The sustainable
failure rates of 0.065, 0.006, 0.006 and 0.015 failure/year
and repair time of 6, 4, 4, and 10 hours are used for feeder
section, switches, fuses, and transformers respectively [35] in
the simulation. The historical data including hourly average
total load demand, wind speed, and solar radiation of each
month of specified observation period is obtained from [36].

Reliability assessment has been carried out for the base
system with and without DG inclusion. It is found that
SAIDI and SAIFI values for the base system without DG are

27  28   30  31   36  38  40  42  43 

1    2    4    5    6    7    9   10  12  13  15  16  18  20  21  25  26  32  33  34  35  37  39  41   

22   23  24        29 

3                      8         11       14         17  19 

85   84  83  82  81  79  78  77  75  72  67  66  52  51  50  49  47  45  44 

86               80              76                                53  54  55       48   46 

  74  73            68        63  61  58 

 71  70  69     65   64  62             59  60 

56   57 

Manual switch 

Load point 

Fuse 

Recloser 

Transformer 

DG 

Sub 

Feeder 4 
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Fig. 8. Distribution system under study

7.39 hours/year and 2.44 interruptions/year respectively. These
values can be used as a benchmark for assessing reliability
improvement of the system with DG. In this paper, a hybrid



0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2947807, IEEE
Transactions on Industrial Electronics

9

DG system inclusive of biofuel generator, WTG unit, and
solar PV unit rated at 300 KVA, 100 kVA, and 100 kVA
respectively and operating at unity power factor has been
considered for evaluating the distribution system reliability.
It is assumed that the DG system is located at node no. 78,
which is an optimal location from economic considerations
as reported in [37], as shown in Fig. 8. This is one of
the possible alternatives for network planners’ perspective,
which can be used for assessing network reliability. Also,
it is assumed that the DG system is capable of an islanded
operation. The approximated load demand and DG generation
can be estimated based on the historical measurement data and
the system conditions recorded before the occurrence of the
fault event. The forecasting methodologies for short-term time-
varying load demand and renewable power generation [25],
[26], [38] can also be used along with a standby power supply
in terms of energy storage to assist practical implementation
of system restoration.

It is assumed that the biofuel, PV, and WTG based DG units
have MTTF of 950, 4380, and 1920 hours respectively and
MTTR of 50, 90, 80 hours respectively [27]. It is also assumed
that the WTG unit operates with a cut-in wind speed of 3.5
m/s, rated wind speed of 12.5 m/s, and cut-out wind speed of
25 m/s. The stochastic nature of renewable energy resources is
considered in the restoration process. Based on the historical
data, capacity factor can be estimated for each renewable
resource. In this study, DG capacity factor is considered to
be a ratio of the average power output relative to the rated
power output.

In order to examine the effects of varying capacity factors of
renewable DG units on system reliability, the wind speed and
solar radiation data are accordingly manipulated. In this paper,
mean absolute percentage error (MAPE) for load demand
prediction was assumed to be 5% and normalized mean
absolute error (NMAE) for wind power prediction, and relative
root mean square error (rRMSE) for solar power generation
were assumed to be 10% and 15% respectively.

The restoration results for the faults in the branches 1-2 and
32-33 for the 86-bus system for a particular hour are presented
in Table III. The biofuel generator is operating at the peak load
of 275 kW, while the output of the Wind and Solar PV units
are predicted to be 64.5 kW and 55 kW respectively. For the
fault in the branch 1-2, the switches to be turned off are 46, 70
and 79 and no switch is to be turned on. Please note that the
switches which are by default in on or off state are not enlisted
here. The island 1 formed as a result of restoration process for
fault branch 1-2 is shown in Fig. 9. The load restored by the
optimal sequence is 387.32 kW. Similarly, for the fault in the
branch 32-33, the switches to be turned off are: 31, 46, 70
and 79. The two islands 1 and 2 formed as a result of fault
in branch 32-33 are shown in Fig. 9. The system is restored
from both mains supply and hybrid DG system and thus, the
restored load is 576.32 kW. The computation times and the
lost loads for the above-mentioned faults are given in Table
III.

As seen, the proposed Tribe PSO algorithm with encoding
process effectively calculates the optimal restoration sequence.
Since the main focus of the paper is on the reliability as-

 

 

 

 

 

 

 

[26] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss 
reduction and load balancing," IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401-1407, 
Apr. 1989. 

Island 2

Island 1

Fig. 9. Island formations due to the faults at branch 1-2 and branch 32-33

sessment of a distribution network embedded with distributed
generation by adopting an optimal restoration strategy with
a novel encoding scheme and addressing the uncertainties
associated with the renewable DG system and load demand,
the impact of restoration strategy and prediction errors on
SAIDI and SAIFI is discussed in the following section.

B. Impact of Restoration Strategies and Prediction Errors on
SAIDI and SAIFI in 86-bus NSW System

This section proposes a service restoration strategy con-
sidering time-varying load demand and intermittent power
generation. In this subsection, the hybrid DG test system with
300 kW from biofuel generator, 100 kW from WTG unit, and
100 kW from solar PV unit is considered for evaluating the
distribution system reliability. Five scenarios were studied to
compare the impacts of restoration strategies and prediction
errors on system reliability in terms of yearly average SAIDI
and SAIFI by considering different capacity factors of wind
and solar PV units.

1) Neglecting the Prediction Errors (Scenario 1-3): Three
scenarios were considered to highlight the reliability bene-
fits of using restoration optimization with time-varying load
and generation. In scenario-1, the hourly time-varying load
demands and renewable power generation over the interruption
period are used as inputs for every possible restoration strategy
in the Monte Carlo simulation. In scenario-2, the constant
load demand and generation calculated based on the time-
varying variables by using the method described in [39] are
used as inputs for solving the same restoration optimization
problem. In scenario-3, a deterministic breadth-first search
method [40] considering maximum load demand and average
power generation is used to implement the restoration strat-
egy. It does not account for the restoration optimization and
uncertainties in load and generation. Moreover, it is assumed
that the prediction errors are neglected for scenario-1 and
scenario-2. With different considerations in three scenarios,
different restoration strategies will be generated. Consequently,
the system reliability can be affected when different restoration
strategies are applied. The impact of different DG capacity
factors are also considered for the above three scenarios.
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TABLE III
RESTORATION RESULTS FOR 86-BUS NSW SYSTEM

Faulty Branch Switches On Switches Off Load Shedding Nodes Load Restored Lost Load Computational Time
(kW) (%) (Seconds)

1-2 - 46, 70, 79 2-46, 71, 80 387.32 37.87 2.24
32-33 - 31, 46, 70, 79 32-46 576.32 13.48 2.28

It can be observed from Fig. 10 that the yearly average
SAIDI improvement for scenario-1 is of the order of 17.8%,
16.8%, and 15.8% for DG capacity factors of 20%, 25%,
and 30% respectively as compared to scenario-2. Similarly,
the yearly average SAIFI improvement of 9.3%, 8.7%, and
8.2% can be seen in case of scenario-1 as shown in Fig. 10.
In scenario-3, the exclusion of restoration optimization and
uncertainties results in the highest yearly average SAIDI and
SAIFI for all considered DG capacity factors as compared
to scenarios 1 and 2. As compared to scenario-2, the yearly
average SAIDI in scenario-3 increases by 10.2% 12%, and
10.1% for DG capacity factors of 20%, 25%, and 30% respec-
tively. The yearly average SAIFI in scenario-3 also increases
by 0.8%, 1.7%, and 1.7% as compared to scenario-2. It can be
seen that both SAIDI and SAIFI show significant reductions
if optimal restoration and uncertainty in terms of time-varying
load demand and power generation are considered for deriving
the optimal restoration strategy.

Monte Carlo simulation can also be used to establish prob-
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Fig. 11. Cumulative probability distributions of (a) SAIDI and (b) SAIFI
with a capacity factor of 20% for wind and solar PV based DG units

ability distributions of reliability indices, which could provide
valuable information for system operators. Fig. 11(a) and Fig.
11(b) show the cumulative probability distributions of SAIDI
and SAIFI respectively with a capacity factor of 20% for wind
and solar PV based DG units while Fig. 12(a) and Fig. 12(b)
show cumulative probability distribution with a capacity factor
of 30%.

2) Considering the Prediction Errors (Scenario 4 and 5):
The predicted values of time-varying load demand and re-
newable power generation are used as inputs in scenario-
4 for every possible restoration scheme in the Monte Carlo
simulations, whereas scenario-5 emphasizes on the constant
load demand and generation, calculated based on the predicted
values, as inputs.

In Fig. 13, the yearly average SAIDI in scenario-4 show
improvement of 7.9%, 7.3%, and 6.6% in comparison with
scenario-5 for the DG capacity factors of 20%, 25%, and 30%
respectively. Similarly, the yearly average SAIFI improvement
of 3.2%, 2.9%, and 2.7% can be observed in case of scenario-4
as shown in Fig. 13.

It can be seen that there is a small change in SAIDI and
SAIFI values for scenarios 2 and 5, which indicates that the
use of constant inputs can significantly reduce the impact
of prediction error. The use of constant input in restoration
may overestimate the uncertainties posed by the renewable
generation, thus resulting into declination of SAIDI and SAIFI.

VI. CONCLUSION AND FUTURE WORK

In this paper, the reliability assessment of a distribution
system with hybrid DG systems was undertaken consider-
ing optimal restoration strategies and system uncertainties.
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with a capacity factor of 30% for wind and solar PV based DG units
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A restoration optimization algorithm including time-varying
load demand and stochastic generations was formulated. The
restoration problem was solved using the parameter free
intelligent-based TRIBE PSO incorporating a novel encoding
scheme. The uncertainties in terms of renewable power avail-
ability, time-varying load demand, stochastic prediction error,
and random faults have been simulated using probabilistic
models. The time correlation and statistical characteristics of
time series variables were also simulated using probabilistic
models. These models were developed based on an AR model
and the utilization of probability transformation technique.
The distribution system reliability was evaluated for different
scenarios using a time sequential Monte Carlo simulation
approach. It was found that the system is seen to be more
reliable (in terms of yearly average SAIDI and SAIFI) when
time-varying load demand and generation are taken into con-
sideration in the restoration process. As a future work, the
proposed strategy can be extended to the meshed networks.
Also, the islanded operation of radial and meshed distribution
networks can be undertaken in accordance with the technical
standards. Moreover, the proposed research can be realized
practically by incorporating necessary amendments in the fault
management and system restoration module of distribution
management systems.
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