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Abstract The design of an integrated 4WS + DYC control system to guide a vehicle on a
desired path is presented. The lateral dynamics of the path follower vehicle is formulated by
considering important parameters. To reduce the effect of uncertainties in vehicle parame-
ters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations
are performed using a nonlinear vehicle model in MATLAB environment in order to in-
vestigate the effectiveness of the designed controller. Results of simulations show that the
controller has a profound ability to making the vehicle track the desired path in the presence
of uncertainties.
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Notation

Alphabetic
A State-space matrix
B Input matrix
C Output matrix
C Set of complex numbers
Cαf (Cαr ) Cornering stiffness of front (rear) tires
d Output from perturbation block
D Constant scaling matrix
E Disturbance matrix
c.g. Center of gravity
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eu Weighted control input
ez Output weighted signal
Fyf (Fyr ) Lateral force of front (rear) tires
Fu Upper LFT
Gsys System nominal model
i Scaled disturbance input
Iz Vehicle moment of inertia around z axis
inf Infimum
Lf (Lr ) Distance from vehicle center of gravity to front (rear) axle
LFT Linear fractional transformation
m Vehicle mass
Mz External yaw moment produced by DYC system
U Controller input
p (p̄) Uncertain (nominal) parameter
Q Parameter nominal dispersion
r (ṙ) Lateral position (velocity) error
Ṙ (Ṙd ) Vehicle real (desired) velocity
� Set of real numbers
S Sensitivity function
sup Supremum
u Vehicle longitudinal velocity
ud Desired longitudinal velocity
v Vehicle lateral velocity
vd Desired lateral velocity
V Vehicle velocity
w Input to perturbation block
W Disturbance vector
Wz,Wu,Wρ System output, control input, road input weighting functions
x, y, z Coordinate system attached to the vehicle
X State-space vector
Z Output signal

Greek
αf (αr ) Side slip angle of front (rear) tires
βf (βr ) Angle of front (rear) tire velocity with longitudinal axis of vehicle
δ Perturbation
δf (δr ) Front (rear) steering angle
ΔF Fictitious uncertainty block
Δsys Uncertain matrix
ρ Radius of curvature of the desired path
μ Structured singular value
σ̄ Maximum singular value
ω Frequency
ψ (ψ̇) Yaw angle (rate)
ψd (ψ̇d ) Desired yaw angle (rate)
ψe Orientation error
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1 Introduction

With the population growth, the numbers of vehicles and passengers have been increased in
the streets and highways leading to more traffic problems. Several measures such as building
new highways and roads have been considered in order to reduce traffic congestion and
increasing safety, but such measures do not always suffice because of environmental and cost
constraints. One way to improve the safety of roads is to remove the human element errors
during driving. This can lead to automatic driving technology, which is the fundamental of
intelligent transportation systems (ITS) and is being studied by many researchers during
recent years. The primary task of automatic driving is to make an autonomous vehicle to
follow a reference path automatically. During this path following, therefore, several issues
should be considered to have an acceptable path control. Vehicle controllers that meet these
requirements are called path followers.

The goal of a path-following controller is to minimize the lateral distance between the
vehicle and a defined path, to minimize the difference in the vehicle and the path head-
ings and to limit the control input to smoothen the motions while maintaining the stability.
Several studies have been carried out regarding the path-following problem. El Hajjaji et
al. [1] focused on the design of a stabilizing fuzzy controller for the path-following prob-
lem of vehicles using a nonlinear dynamics model. The vehicle model is approximated by
a set of linear models interpolated by fuzzy membership functions, and then a model-based
fuzzy controller is developed to stabilize the model. Then the outcome of the path-following
problem is parameterized in terms of a linear matrix inequality (LMI) problem. The LMI
problem is solved by a convex optimization technique to complete the fuzzy path-following
control design for vehicles. Consolini et al. [2] considered a special path-following task so
that a given front point of a car-like vehicle, which is within the look-ahead range of a stereo
vision system, to follow a prespecified Cartesian path. A solution to this path-following
problem was provided by a feedback/feedforward control strategy where the feedforward
was determined by a dynamic generator based on exact dynamic inversion over the nominal
vehicle model and the feedback was mainly issued by correcting terms proportional to the
tangential and normal errors determined with respect to the vehicle’s ideal trajectory. Bal-
luchi et al. [3] considered a kinematic model of a nonholonomic wheeled vehicle to follow
a path. They assumed that the current distance and the heading angle error with respect to
the closest point on the reference path can be measured but only the sign of the path cur-
vature is detected. They used a hybrid system formalism to model the problem based on
optimal control theory, as the feedback information was both continuous and discrete. Hell-
ström et al. [4] propose a path-tracking algorithm called Follow the Past, in which a human
driver drives the path once, while the computer records the position, velocity, orientation,
and steering angle. Then this piece of information is used to control the vehicle each time
it autonomously travels along the path. If the vehicle gets off the course, for example, as
a result of avoiding an obstacle or because of noise in positioning sensors, the Follow the
Past algorithm steers like the driver, plus an additional angle, based on the distance to the
path. Heredia et al. [5] present a method to analyze the stability of an autonomous vehicle
path-following algorithm taking into account explicitly the computation and communica-
tion delays in the control loop. These pure delays are present in autonomous vehicles due
to position estimation. The problem is analyzed by solving directly the transcendental char-
acteristic equation that appears when the time delay is considered. The analysis is carried
out for straight paths and paths of constant curvature, and the method is applied to the pure
pursuit path-tracking algorithm. Goodarzi et al. [6] treated this problem by the application of
a linear quadratic regulator (LQR) technique. They used an integrated controller comprising
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an active front steering (AFS) in low lateral acceleration regimes and a direct yaw moment
control (DYC) system for high-g maneuvers. The road curvature and the lateral offset be-
tween the desired path and the vehicle were taken as the feedback/feed-forward signals that
produce both the front steering angle and the external yaw moment signals as the control
efforts.

With the developments of robust control theories, applications of robust controllers have
become feasible. One important application of robust control is in vehicles, namely in
aerial, maritime, and ground vehicles. Examples are a robust controller for altitude track-
ing and stability augmentation of an unmanned autonomous air vehicle [7] and control of
an autonomous underwater vehicle using H∞ control [8]. Several works are also devoted to
ground vehicles. Hiraoka et al. [9] propose an automatic path-tracking controller of a four-
wheel steering vehicle based on the sliding-mode control theory. The front and rear wheel
steerings are decoupled at front and rear control points and are defined as centers of percus-
sion with respect to the front and rear wheels, respectively. The front/rear control points are
then regulated by the front/rear steering to make a good tracking of the desired path. In [10]
Moriwaki proposes an autonomous steering controller for path following using nonlinear
state feedback H∞ control, and the deviation of the vehicle from the planned path, which is
calculated from the data of a CCD camera, is kept small by feedback control via the steer-
ing motors. Ackermann et al. [11] consider designing linear and nonlinear controllers for
automatic steering of a city bus using sliding mode control.

DYC, 4WS, and their combinations as well as the robust control systems have been ex-
tensively used for vehicle dynamics control purposes. The current paper makes advantage
of both DYC + 4WS vehicle dynamics methods together with a robust control methodology
in order to design a new path-following system for autonomous ground vehicles. The con-
troller is designed based on the μ-synthesis method incorporating 4WS and DYC systems.
The aim is to design an advanced controller with large number of control inputs in order
to improve the path-following problem and at the same time to account for the structured
uncertainties.

The paper is organized as follows. Section 2 is devoted to vehicle dynamics modeling
and formulation based on the path-following considerations. Section 3 deals with the design
of controllers suitable for path following aims. The robust performance and the robust sta-
bility analysis of the controller in the μ-framework are also discussed in this section. The
performance of the controller is examined in Section 4 based on a simulation analysis with
a nonlinear vehicle model. Finally, the work is concluded in Section 5.

2 Modeling

Mathematical modeling of vehicle motion is necessary for both control and simulation pur-
poses. The former will be discussed in the following subsections, whereas the simulation
program is based on a previous published work.

2.1 The single track model

A single-track vehicle model with two degrees of freedom, comprising the lateral position
y and yaw angle ψ , is shown in Fig. 1. The lateral position is measured along the lateral
axis of the vehicle toward the center of rotation of the vehicle, and the vehicle yaw angle ψ

is measured with respect to the global axis X. This single-track model has three inputs: the
front steering angle δf , the rear steering angle δr , and the external yaw moment Mz around
the z axis of the vehicle.
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Fig. 1 The single-track model

The dynamic translational and rotational equations of the single-track model read [12]

m(v̇ + uψ̇) = Fyf + Fyr , (1)

Izψ̈ = Lf Fyf − LrFyr + Mz, (2)

where Fyf and Fyr are tire lateral forces at front and rear, respectively, and u is the vehicle
longitudinal speed. Lf and Lr are the distances of front and rear axles from the c.g. of the
vehicle. m and Iz are the vehicle mass and its mass moment of inertia around the z axis,
respectively. The tire lateral forces are defined as

Fyf = 2Cαf

(
δf − v + Lf ψ̇

u

)
, (3)

Fyr = 2Cαr

(
δr − v − Lrψ̇

u

)
, (4)

where Cαf and Cαr are front and rear cornering stiffness. The factor 2 is to account for the
two tires on each axle. Substituting Eqs. (3) and (4) into Eqs. (1) and (2), the translational
and rotational equations of the single-track model can be obtained as

v̇ =
(

−2Cαf + 2Cαr

mu

)
v +

(
−u − 2Cαf Lf − 2CαrLr

mu

)
ψ̇ +

(
2Cαf

m

)
δf

+
(

2Cαr

m

)
δr , (5)

ψ̈ =
(

−2Lf Cαf − 2LrCαr

Izu

)
v +

(
−2L2

f Cαf + 2L2
rCαr

Izu

)
ψ̇ +

(
2Lf Cαf

Iz

)
δf

+
(

−2LrCαr

Iz

)
δr +

(
1

Iz

)
Mz. (6)

2.2 Path-following problem

In this section, a dynamic path-following model is derived based on the single-track model
and with the state variables in terms of position and orientation error. The configurations
of the actual and desired vehicle orientations are demonstrated in Fig. 2. The xy frame
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Fig. 2 The path-following
configuration

represents the vehicle orientation on its actual path, whereas the xdyd frame represents the
vehicle orientation on its desired path. The goal is to minimize both the lateral position and
orientation errors relative to the desired path, in order to provide a desired path control.

The orientation error and its derivative can be written as [13]

ψe = ψ − ψd, (7)

ψ̇e = ψ̇ − ψ̇d , (8)

where ψ̇d is the rate of change of the desired orientation of the vehicle and is defined as

ψ̇d = u

ρ
, (9)

where ρ is the radius of curvature of the desired path. The lateral position error vector r can
be defined in the mobile frame x–y as

r = xeî + yeĵ , (10)

where the derivative of ye can be obtained as

ẏe = v + uψe. (11)

Substituting Eqs. (7) and (11) and their derivatives into Eqs. (5) and (6) yields the state space
form of the dynamic path-following problem:

Ẋ = [A]X + [B]U + [E]W
Z = [C]X + [

DB
]
U + [

DE
]
W,

(12)

where the matrices A, B , E, C, DB , DE and the state, input, and disturbance vectors X, U ,
and W are:

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0
0 −2

Cαf +Cαr

mu
2

Cαf +Car

m
2

−Cαf Lf +CαrLr

mu

0 0 0 1

0 2
−Cαf Lf +CαrLr

Izu
2

Cαf Lf −CαrLr

Iz
−2

Cαf L2
f

+CαrL
2
r

Izu

⎤
⎥⎥⎥⎥⎦ , (13)
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B =

⎡
⎢⎢⎢⎣

0 0 0
2Cαf

m

2Cαr

m
0

0 0 0
2Cαf Lf

Iz
− 2CαrLr

Iz

1
Iz

⎤
⎥⎥⎥⎦ , E =

⎡
⎢⎢⎢⎢⎣

0
2

−Cαf Lf +CαrLr

m
− u2

0

−2
Cαf L2

f
+CαrL

2
r

Iz

⎤
⎥⎥⎥⎥⎦ , (14)

C =
[

1 0 0 0
0 0 1 0

]
, DE = [0]2×1, DB = [0]2×3,

X =

⎧⎪⎪⎨
⎪⎪⎩

ye

ẏe

ψe

ψ̇e

⎫⎪⎪⎬
⎪⎪⎭

, U =
⎧⎨
⎩

δf

δr

Mz

⎫⎬
⎭ , W =

{
1

ρ

}
.

(15)

Equation (12) serves as the form that will be used to define the uncertain state space model.
In this equation, A is the state matrix, B is the input matrix, E is the disturbance matrix,
C is the output matrix, and DE and DB are feedthrough matrices corresponding to the
disturbance and control inputs, respectively. It should be noted that Z consists of the lateral
distance error (ye) and the orientation error (ψe) described earlier.

3 Controller design

In this section, the design process for the proposed controller is discussed. The intention is
to design a robust controller for the vehicle path-following problem in the presence of uncer-
tainties. This control method lets one to consider unstructured and parametric uncertainties
due to un-modeled dynamics, simplifications, neglected nonlinearities, and system param-
eter variations. This is something that is impossible or is with great difficulty to include in
other control methods.

3.1 Uncertainties

The dynamic path-following state space model described by Eq. (12) contains uncertainties
due to the variations of parameters around their nominal values. Based on the road condi-
tions, the characteristics of tire and road vary, and as a result the tire-road friction coefficient
also varies. The influence of friction coefficient variations can be considered in the cornering
stiffnesses Cαf and Cαr .

Considering p as an uncertain parameter of the vehicle, it can be expressed as the sum of
two nominal and uncertain parts written in the form of a multiplicative perturbation [14]:

p = p̄(1 + Qδ), (16)

where p̄ is the nominal value, Q is the nominal dispersion of the parameter and considered to
vary between 5 % and 45 %, and δ is an unknown perturbation satisfying ‖δ‖ ≤ 1. According
to Eq. (16), the cornering stiffness can be described as

Cαf = C̄αf (1 + Qf δ1), (17)

Cαr = C̄αr (1 + Qrδ2). (18)

Equations (17) and (18) are used to define uncertain form of the front and rear cornering
stiffness. Including the uncertainties due to the cornering stiffness makes the state space
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Fig. 3 The upper LFT
description

model of the vehicle uncertain. Therefore, the uncertain path-following state space model
replacing Eq. (12) is

G(s) =
[

A0 E0 B0

C0 DE
0 DB

0

]
+

2∑
i=1

δi

[
Ai Ei Bi

Ci DE
i DB

i

]
. (19)

Using the vehicle data given in Table 3 (Appendix A), the matrices in Eq. (19) are evaluated
and provided in Appendix B.

In order to construct the model suitable for a robust controller design, the uncertain state
space model must be described in a Linear Fractional Transformation (LFT) form. The LFT
structure can be constructed using Singular Value Decomposition (SVD) method by which
the uncertainty matrix can be decomposed into [14][

Ai Ei Bi

Ci DE
i DB

i

]
=

[
Pi

Vi

][
Si Ti Ji

]
, (20)

where Pi and Vi are variables used to relate the system state derivatives and outputs to the
output of uncertainty matrix. Si , Ti , and Ji are used to define uncertainty matrix inputs in
the LFT form. Using decomposed matrices, the perturbed equations can be obtained as

⎡
⎢⎢⎣

ẋ

w1

w2

Z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A0 P1 P2 E0 B0

S1 0 0 T1 J1

S2 0 0 T2 J2

C0 V1 V2 DE
0 DB

0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

d1

d2

W

U

⎤
⎥⎥⎥⎥⎦ = [

Gsys(s)
]
⎡
⎢⎢⎢⎢⎣

x

d1

d2

W

U

⎤
⎥⎥⎥⎥⎦ , (21)

where Gsys is the interconnection matrix. Figure 3 represents the upper LFT description in
which w is the input vector to the perturbation block and d is its output vector, whereas Z

represents the output signals to be minimized and includes both performance and robustness
measures. The perturbation block Δsys corresponds to parameter variations and is a diagonal
matrix. W and U denote the disturbance and controller inputs, respectively. The disturbance
is the input from road curvature, and the controller inputs include vehicle’s front steering
angle (δf ), the rear steering angle (δr ), and the external yaw moment (Mz).

Considering the state space model and decomposed matrices, the interconnection matrix
Gsys is evaluated for the vehicle data and presented in Appendix B.

Therefore, the input/output relation of the perturbed model is described by the upper LFT
as

Z = Fu(Gsys,Δsys)

[
W

U

]
(22)

with the diagonal, uncertain matrix

Δsys =
[

δ1 0
0 δ2

]
. (23)
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Fig. 4 Interconnection structure
of the closed-loop system

3.2 Design specifications

The block diagram of the closed-loop system, which includes the vehicle model, the feed-
back structure, and the controller, as well as the elements reflecting the model uncertainties
and the performance objectives, is depicted in Fig. 4, where i is the scaled disturbance input
from the road. The closed-loop system output ez may be determined by

ez = SW, (24)

where the matrix S = S(Gsys) is considered as the nominal sensitivity function with respect
to the input W from the road. The performance objective requires the transfer function from
W to ez and eu (defined as eu = KSW ) to be small in the sense of ‖.‖∞ for all possible
(stable) uncertainty matrices Δsys. The transfer function matrices Wz and Wu of Fig. 4 are
used to reflect the relative significance over different frequency ranges for which the per-
formance is required. In this work, the performance weighting function is a scalar function
and is chosen in such a way that to ensure, apart from good disturbance attenuation, a good
transient response. The numerical result is

Wz =
[

1.7 s2+1.8s+10
s2+4s+0.01

0

0 0.005 s2+1.8s+10
s2+8s+0.01

]
. (25)

Figure 5 illustrates the variation of weighting functions with frequency. It is clear that at
low frequencies the effect of the steady-state output for Wz1 and Wz2 is in order of 5 × 10−3

and 0.2 (or less), respectively. This performance requirement becomes less stringent with
increasing frequency so that the disturbance is no longer influential from above 10 rad/s
frequency. The control weighting function Wu is chosen based on the input physical limita-
tions. To limit control input deflections, weighting functions Wul and Wu2 are obtained by
considering maximum steering angles of 35 and 20 degrees for the front and rear wheels,
respectively; Wu3 is considered to limit the maximum corrective external yaw moment to
5000 N m. Wρ is used to scale the disturbance from the road, considering the minimum ra-
dius of 100 m that a vehicle can follow at high-g maneuvers [14]. Numerical values for these
factors are given in Table 1.

The design problem for the vehicle system is to find a linear controller K(s) to generate
the output feedback U(s) = K(s)Z(s), to ensure the following properties of the closed-loop
system.

3.2.1 Nominal performance

The closed-loop system achieves nominal performance if the following performance objec-
tive is satisfied for the nominal plant model Gsys:∥∥∥∥ WρWzS(Gsys)

WρWuKS(Gsys)

∥∥∥∥
∞

< 1, (26)
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Fig. 5 (a) Singular values of
1

Wz1
(b) Singular values of 1

Wz2

Table 1 Weighting factors
Factor Value

Wul 1.637

Wu2 2.865

Wu3 2 × 10−4

Wρ 0.010
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Fig. 6 Schematic diagram of the
open-loop system

where Wρ , Wz, and Wu are appropriately chosen weighting functions. This objective corre-
sponds to the mixed S/KS sensitivity optimization [14].

3.2.2 Robust stability

The closed-loop system achieves robust stability if the closed-loop system is internally stable
for each possible, perturbed plant dynamics G = Fu(Gsys,Δsys) [14].

3.2.3 Robust performance

The closed-loop system must maintain, for each G = Fu(Gsys,Δsys), the performance ob-
jective [14] ∥∥∥∥ WρWzS(G)

WρWuKS(G)

∥∥∥∥
∞

< 1. (27)

3.3 μ-Synthesis controller design

Let P (s) denote the transfer function matrix of the six inputs–nine outputs open-loop system
in Fig. 6, and let the block structure Δp be defined for the case of robust performance
analysis as

ΔP :=
{[

Δsys 0
0 ΔF

]
: Δsys ∈ �2×2,ΔF ∈C

1×5

}
, (28)

in which � and C are the sets of real and complex numbers.
The first uncertainty block Δsys of this structured matrix is diagonal and corresponds

to the uncertainties used in the modeling of the vehicle system. The second block ΔF is a
fictitious uncertainty block that is introduced to represent the performance requirements in
the frame of the μ-approach.

To meet the design objectives, a stabilizing controller K(s) is to be found such that, at
each frequency ω ∈ [0,∞], the structured singular value μ satisfies the condition

μΔP

[
Fl(P,K)(jω)

]
< 1. (29)

The fulfillment of this condition guaranties robust performance of the closed-loop system
as in (27). An iterative method called D-K iteration μ-synthesis method is proposed in [15]
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Table 2 Controller
characteristics Characteristic Upper bound margin Lower bound margin

Robust stability 2.2222 2.1147

Robust performance 1.0743 1.0743

Fig. 7 μ-Plot of robust stability
margins

to solve Eq. (29). It is based on solving the following problem for a stabilizing controller K

and a diagonal constant scaling matrix D:

inf
K(s)

sup
ω∈�

inf
D∈D

σ̄
[
DFl(P,K)D−1(jω)

]
. (30)

The controller for the vehicle path-following is designed based on the above procedure
within MATLAB environment. To this end, uncertain parameters are defined, and their un-
certainty domains are determined based on the physical characteristics of the parameters.
Then, the uncertain model of the path-following system is defined as well as determining
weighting functions. Next, the configuration of the control system is constructed considering
Fig. 4, and finally, the μ-synthesis controller is designed based on the D-K iteration method
for the open-loop interconnection. In Table 2 the robust characteristics of the designed con-
troller are demonstrated. The robust stability margin and robust performance margin are two
important characteristics of a robust controller, which are also shown in Figs. 7 and 8.

The robust stability margin is the size of the smallest deviation from nominal of the
uncertain elements that leads to system instability and is shown in Fig. 7. A robust stability
margin greater than 1 means that the uncertain system is stable for all values of its modeled
uncertainty. Considering Table 2 and Fig. 7, it is determined that the uncertain system is
robustly stable and can tolerate up to 211 % of the modeled uncertainty.

Due to the presence of specific values of uncertain elements, the performance of a nomi-
nally stable uncertain system model will degrade. Figure 8 indicates the robust performance
margin, which is a measure of the level of degradation brought on by the modeled uncer-
tainty. Figure 8 shows that in the upper bound of the modeled uncertainty, the performance
gain of plant with controller is always smaller than unity, which always satisfies Eq. (27). It
should be mentioned that in Figs. 7 and 8, the exact robust stability and robust performance
margin lies between upper and lower bounds.
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Fig. 8 μ-Plot of robust
performance margins

Fig. 9 Configuration of the simulation

4 Numerical simulations

In this section, numerical simulations are carried out to evaluate the performance of the de-
signed controller. An eight-degrees-of-freedom nonlinear vehicle model is used to simulate
the behavior of the real vehicle. This simulation is used in several previous work of the au-
thor (e.g., [16]). Figure 9 demonstrates the simulation configuration built in the environment
of MATLAB software [17].

The robust controller generates the required commands for the vehicle in a given maneu-
ver with a known constant speed based on the lateral distance and orientation errors that are
calculated by using feedbacks from the vehicle response and road feedforward. The external
Mz torque is applied to the vehicle through applying brake to one of the wheels. The braking
wheel selection is as follows:

• Turning left (r > 0)
– Mz > 0: Brake on rear left wheel
– Mz < 0: Brake on front right wheel
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• Turning right (r < 0)
– Mz > 0: Brake on front left wheel
– Mz < 0: Brake on rear right wheel

The braking force of the corresponding tire produces a yaw moment Mz around the vehi-
cle center of gravity. The effect of longitudinal slip on the lateral force is taken into account
by using the combined slip Pacejka tire model [18].

Two maneuvers are considered to investigate the performance of the controller: (a) A con-
stant radius circular path; (b) A lane change maneuver during which the vehicle moves in a
path with two different radii.

Also, in order to make the performance of the controller comparable, each maneuver is
also performed by three other controllers namely AFS, 4WS, and AFS + DYC described
below:

• The AFS controller has only the front steering angle for input
• The 4WS controller with both the front and rear steering angle inputs
• The AFS + DYC controller has the front steering angle and the external yaw moment as

two control inputs

It should be mentioned that the structure of all controllers are similar and the process of
designing the controllers is the same as that of the 4WS + DYC controller.

4.1 Circular path

In this maneuver the vehicle with a constant speed of 30 m/s suddenly enters a circular path
of 120 meters radius with the road friction coefficient of 0.9. Simulation results are shown
in Fig. 10.

Figure 10a shows the lateral distance error of the vehicle for all controllers. As it can
be seen the magnitude of this error for the 4WS + DYC controller is lower than those of
the other controllers. The same trend is observed from Fig. 10b for the orientation error of
the vehicle. Although the performances of the 4WS and AFS + DYC controllers are close in
Fig. 10a, but the 4WS controller shows better efficacy in Fig. 10b. This shows the usefulness
of the steerability of the rear wheels in 4WS systems in reducing the side slip angle of the
vehicle and hence reduction in the orientation error.

Figures 10c and 10d show the variation of the front and rear steering angles of the vehicle,
respectively. The steering angles of those systems with the DYC controller are larger than
those of the other controllers. The reason is that the steering ability is enhanced due to the
yaw moments that are applied by the act of DYC system presented in Fig. 10e. In fact, the
yaw moment produced by the DYC system provides grounds for increase of tire slip angles
and in turn the tire lateral forces. The 4WS + DYC system benefits from this effect both in
the front and rear. Proper adjustments of steer angles in the front and rear makes it possible to
adjust the total lateral force acting on the vehicle and at the same time produce the necessary
yaw moment for the turning of the vehicle. This is why the 4WS + DYC system has a better
response compared to the other systems.

The orientation error, as seen from Fig. 10b, does not die out in a circular maneuver and
thus results in a steady-state error. This is a natural result of the vehicle dynamics equations,
and in order to observe it, the side slip angle of the vehicle can be written as

β = v

u
= 1

u
(ẏe − uψe). (31)
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Fig. 10 Simulation results of the
circular maneuver
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Fig. 10 (Continued)

Since the steady-state value of ė1 = ẏe is zero, the steady-state value of vehicle side slip
angle becomes

(ψe)ss = −βss, (32)

which shows that the steady-state error attains the magnitude of vehicle sideslip angle. Sub-
stituting Eq. (7) into Eq. (32) leads to

βss = −(ψ − ψd) ⇒ βss + ψ = ψd. (33)

This means that the velocity vector is still in the same direction of the desired velocity.

4.2 Lane change maneuver

This maneuver is designed in such a way that the vehicle with a constant velocity of 30 m/s
enters a lane change path of 120 m radius and then turns in an opposite path with the same
radius and finishes on a straight line. The results are shown in Fig. 11.
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Fig. 11 Simulation results of the
lane change maneuver
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Fig. 11 (Continued)

Again the values of both lateral and heading errors are considerably lower for the 4WS+
DYC controller compared to those of the other controllers as shown in Figs. 11a and 11b.
Once again, Figs. 11c and 11d show that the 4WS + DYC controller is able to use larger
steer angles and properly adjust the force and moment resultants. Figure 11e illustrates the
values of the corrective external yaw moment applied by the DYC system.

4.3 Robustness

During the vehicle motions, several parameters like mass, tire properties, and road friction
may vary, and the robust controller must perform independently of the parameter variations.
In this section the performance of the controllers on a low-friction road is investigated. The
vehicle enters a circular pass of radius 120 m with a speed of 20 m/s on a road with a
friction coefficient of 0.3. This is a severe maneuver in which the AFS controller is unable
to hold the stability and the vehicle becomes out of control. The output results for the three
other controllers are illustrated in Fig. 12. The results show that even the 4WS controller has
an undesired fluctuating response and would become unstable if the speed (in fact lateral
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Fig. 12 Simulation results for a
circular maneuver on the
low-friction road

acceleration) was increased. The two other controllers incorporating the DYC, on the other
hand, have more stable responses. The response of the 4WS + DYC controller is superior
and is able to follow the pass with very low lateral and orientation errors.

4.4 Discussion

Unlike the AFS system, which only utilizes the front steering angle for controlling the de-
sired path, the 4WS system in addition uses the rear steering angle and effectively reduces
the vehicle yaw rate and side slip angle. The drawback of both AFS and 4WS systems is
the limitation of tire lateral force at high lateral accelerations when the tire force levels off
with increase of slip angle. The DYC system that uses the braking action has the advantage
of working properly at high lateral accelerations. The addition of the DYC system to the
controllers, therefore, is reasonable and was shown to be a suitable measure to improve the
performance of the controllers. It was also effective in providing robustness against the pa-
rameter changes. It was observed that the combination of 4WS and DYC systems results in a
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Table 3 Vehicle data

Parameter Index Value

Vehicle mass m 1300 (kg)

Vehicle yaw moment of inertia J 2500 (kg m2)

Vehicle forward speed u 30 (m/s)

Distance from front axle to c.g. Lf 1.2 (m)

Distance from rear axle to c.g. Lr 1.3 (m)

Front tire nominal cornering stiffness C̄αf 32000 (N/rad)

Rear tire nominal cornering stiffness C̄αr 32000 (N/rad)

Maximum perturbation on front tire cornering stiffness Qf 45 %

Maximum perturbation on rear tire cornering stiffness Qr 45 %

superior controller, which provides a good path following and stability as well as appropriate
robustness against the parameter changes.

5 Conclusions

In this study the design of integrated controllers for automatic path following of vehicles was
presented. The mathematical model was derived based on lateral and orientation errors that
should be forced to vanish by the controller. Robust control theory using the μ-synthesis
method was applied to design a controller that accounts for the uncertainties of vehicle
model. Four types of control systems, namely AFS, 4WS, AFS + DYC, and 4WS + DYC
were developed for comparison purposes. Numerical simulations were performed in order to
assess the effectiveness of the controller and to compare the responses of the control types.
Results provided for three different maneuvers, namely a circular path on a high friction
road, a lane-change maneuver, and a low-friction circular path, indicated that not only the
4WS+DYC controller was able to follow the desired path with considerable low lateral and
orientation errors, but also it had much better efficacy in comparison to the other controllers
in all situations. This controller utilizes the maximum control potentials both in low and
high lateral accelerations and when a parameter in vehicle motion is changed.

Appendix A

See Table 3.

Appendix B

Parametric relations and numerical values for matrices A0, B0, C0, D0, E0, Ai , Bi , Ci , Di ,
Ei , and Gsys.

A0 =

⎡
⎢⎢⎣

0 1 0 0
0 −2.4615 98.4615 0.1231
0 0 0 1
0 0.0640 −2.56 −2.0032

⎤
⎥⎥⎦ , E0 =

⎡
⎢⎢⎣

0
−1595.1

0
−80.1

⎤
⎥⎥⎦ ,
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B0 =

⎡
⎢⎢⎣

0 0 0
49.2 49.2 0

0 0 0
30.7 −33.3 0.0004

⎤
⎥⎥⎦ ,

C0 =
[

1 0 0 0
0 0 1 0

]
, DE

0 = [0]2×1, DB
0 = [0]2×3,

A1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 −2

Cαf Qf

mu
2

Cαf Qf

m
2

−Cαf Lf Qf

mu

0 0 0 0

0 2
−Cαf Lf Qf

Izu
2

Cαf Lf Qf

Iz
−2

Cαf L2
f

Qf

Izu

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 0 0
0 −0.5538 22.1538 −0.6646
0 0 0 0
0 −0.3456 13.8240 −0.4147

⎤
⎥⎥⎦ ,

B1 =

⎡
⎢⎢⎢⎣

0 0 0
2Cαf Qf

m
0 0

0 0 0
2Cαf Lf Qf

Iz
0 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0
22.1538 0 0

0 0 0
13.8240 0 0

⎤
⎥⎥⎦ ,

E1 =

⎡
⎢⎢⎢⎢⎣

0
2

−Cαf Lf Qf

m

0

−2
Cαf L2

f
Qf

Iz

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0
−26.5846

0
−16.5888

⎤
⎥⎥⎦ ,

C1 = [0]2×4, DE
1 = [0]2×1, DB

1 = [0]2×3,

A2 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 −2 CαrQr

mu
2 CarQr

m
2 CαrLrQr

mu

0 0 0 0

0 2 CαrLrQr

Izu
2 −CαrLrQr

Iz
−2 CαrL

2
r Qr

Izu

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 0 0
0 −0.5538 22.1538 0.72
0 0 0 0
0 0.3744 −14.9760 −0.4867

⎤
⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎣

0 0 0
0 2CαrQr

m
0

0 0 0
0 − 2CαrLrQr

Iz
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0
0 22.1538 0
0 0 0
0 −14.9760 0

⎤
⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎢⎣

0
2 CαrLrQr

m

0

−2 CαrL
2
r Qr

Iz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0
28.8

0
−19.4688

⎤
⎥⎥⎦ ,

C2 = [0]2×4, DE
2 = [0]2×1, DB

2 = [0]2×3,
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Gsys(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.1 0 0 0 0 0 0 0 0
0 −2.5 98.5 0.1 41.1 42.6 −1595.1 49.2 49.2 0
0 0 0 1 0 0 0 0 0 0
0 0.1 −2.6 −2 25.6 −28.8 −80.1 30.7 −33.3 0.0004
0 −0.013 0.5 −0.016 0 0 −0.6 0.5 0 0
0 −0.013 0.5 0.016 0 0 0.7 0 0.5 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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