دانلود شبیه سازی مقاله پیش بینی چند جمله ای نورون ها برای تشخیص سرطان سینه

عنوان فارسی

پیش بینی چند جمله ای نورون ها در طبقه بندی کننده شبکه عصبی برای تشخیص سرطان سینه

عنوان انگلیسی

Polynomial Prediction of Neurons in Neural Network Classifier for Breast Cancer Diagnosis

کلمات کلیدی

سرطان سینه؛ ماموگرافی دیجیتالی؛ شبکه عصبی پیشخور

درسهای مرتبط

مهندسی پزشکی؛ پردازش تصویر

تعداد صفحات انگلیسی : 6 نشریه : IEEE
سال انتشار : 2015 تعداد رفرنس مقاله : 21
فرمت مقاله انگلیسی : PDF نوع مقاله : ISI
قیمت دانلود مقاله
78,000تومان
دانلود رایگان مقاله انگلیسی
آیا این مقاله برای بیس پایان نامه مناسب است؟ : بله آیا این مقاله برای ارائه کلاسی مناسب است؟ : بله (این محصول دارای پاورپوینت 16 اسلایدی برای ارائه کلاسی هست)
برنامه ای که در آن مقاله شبیه سازی شده است : این مقاله در محیط متلب پیاده سازی شده است نام مجله مقاله : International Conference on Natural Computation (ICNC) (کنفرانس بین المللی رایانش طبیعی)
ترجمه: دارد (ترجمه 14 صفحه ای در قالب ورد و پی دی اف) گزارشکار : دارد (فایل گزارشکار که شامل ترجمه کامل مقاله به اضافه توضیحات شبیه سازی در انتهای ترجمه مقاله می باشد؛ 14 صفحه ترجمه مقاله + 6 صفحه توضیحات شبیه سازی) شبیه سازی : دارد (7 فایل شبیه سازی در نرم افزار متلب با فرمت .m)

این مقاله در محیط متلب به صورت کامل شبیه سازی شده و در صورت خرید و دانلود مقاله شما به راحتی قادر خواهید بود از برنامه مربوطه استفاده نمایید. در صورت بروز هر گونه مشکل در نحوه ی اجرای برنامه سایت سیگمالند به مدت 24 ساعت بعد از خرید محصول، پشتیبانی آن را تا اجرای کامل برعهده دارد.

توضیحات و مشاهده مقاله انگلیسی

کاربرد شبکه عصبی در تشخیص سرطان سینه

هر ساله، پژوهش های تشخیص الگو با توسعه فنون نوین یا پالایش فنون موجود، پیشرفت می کنند. قطعاً، اکثر فنون معمول، از یک شبکه عصبی استفاده می کنند که از تعدادی نورون های پنهان درون یک یا چند لایه پنهان برای مسائل دسته بندی، استفاده می کنند. اگرچه روش های ابتکاری مختلف برای تعیین تعداد نورون های این قوانین وجود دارند، اما هیچ تضمینی نمی کنند که یک پیکربندی بهینه استفاده شود و باعث عملکرد بالقوه غیربهینه شود. این قوانین، به صورت post hoc ارزیابی می شوند، که این می تواند بدان معنا باشد که یک روش ad hoc برای آموزش دادن بکار گرفته می شود و هزینه آموزش افزایش می یابد. در حالت ایده آل، از مکانیزمی استفاده می کنیم که به ما توانایی تعریف یک دامنه یا کران برای انتخاب نورون ها را می دهد تا:

  • اعتماد به انتخابمان بوجود بیایید.
  • زمان آموزش غیرضروری کاهش یابد.
  • نتایج بیشتر یا دقیقتری حاصل شود.
  • توسعه شبکه های نوین جدید تسهیل شود و
  • افزودن آسان تر (باز آموزش) دانش جدید به یک دسته بندی کننده، ممکن شود.

در بعضی موارد، پژوهشگران تعیین کرده اند که یافتن پیکربندی بهینه، بسیار دشوار است و روش های پیچیده تر یا پرهزینه تر از نظر محاسباتی فراتر از میزان نیاز، برای بدست آوردن دقت بهتر، پیاده سازی می کنند. درحالی که این قطعاً قابل توجیه است، و در آن مرز تصمیم در فضای ویژگی برای فنون دیگر برای مدل سازی آسان آن بسیار پیچیده است، اما قطعاً ایده آل نیست. الزام برای تعیین بهینه ترین پیکربندی، اکنون نسبت به گذشته، اجباری تر است که این بخاطر افزایش اندازه مجموعه داده ها و حجم داده های مدنظر جهت تحلیل می باشد. این پژوهش، مکانیزمی برای تعیین بهترین تعداد نورون ها در شبکه عصبی تغذیه مستقیم برای بیشینه سازی دقت، ارزیابی می کند. این کار در زمینه یک مسئله واقعی تشخیص سرطان سینه، انجام می شود. با اینکه، هدف اصلی تولید دسته بندی کننده های بسیار دقیق است، اما این کار با پیش بینی تعداد نورون ها برای یک توپولوژی شبکه خاص (برای مثال، گشتاور، تکرار) برای دسته کننده های شبکه عصبی تغذیه مستقیم، انجام می شود.

یک روش نوین برای پیش بینی بهترین تعداد نورون ها در دسته بندی کننده های شبکه عصبی را پیشنهاد و ارزیابی کرده ایم. دقت 86% (60 نورون) در پایگاه داده DDSM و 89.17% (41 نورن) در مجموعه داده UCI، حاصل شد. دقت دسته بندی در کران های پایین و بالای برآورد شده برای هر مجموعه داده، پیش بینی شد. بنابراین، رگرسیون چندجمله ای، یک روش پیش بینی کننده خوب برای این دو مجموعه داده، بود.

این شبیه سازی با استفاده از نرم افزار متلب (MATLAB) انجام شده و در ادامه نیز تصویری از خروجی آن قرار داده شده است:

ماموگرافی دیجیتالی

 

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “دانلود شبیه سازی مقاله پیش بینی چند جمله ای نورون ها برای تشخیص سرطان سینه”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

11 − یک =

آموزش برنامه نویسی

پشتیبانی

ارتباط با ما

  • شماره تماس : 09360147484
  • ایمیل : info@sigmaland.ir

نماد اعتماد الکترونیکی

لوگو طلایی

logo-samandehi
تمامی حقوق مادی و معنوی برای سایت سیگمالند محفوظ است.