عنوان فارسی |
شبکه عصبی مقاوم رو به جلو و بازگشتی بر اساس ترکیب مدل های وزن دار دینامیکی برای پیش بینی قابلیت اطمینان نرم افزار |
عنوان انگلیسی |
Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction |
کلمات کلیدی |
مدل رشد، قابلیت اطمینان نرم افزار، مدل ترکیبی وزن دینامیکی، شبکه های عصبی مصنوعی، الگوریتم ژنتیک، پیش بینی قابلیت اطمینان |
درسهای مرتبط |
یادگیری ماشین |
تعداد صفحات انگلیسی : 9 | نشریه : Elsevier |
سال انتشار : 2014 | تعداد رفرنس مقاله : 34 |
فرمت مقاله انگلیسی : PDF | نوع مقاله : ISI |
آیا این مقاله برای بیس پایان نامه مناسب است؟ : بله | آیا این مقاله برای ارائه کلاسی مناسب است؟ : بله |
برنامه ای که در آن مقاله شبیه سازی شده است : Matlab | نام مجله مقاله : Applied Soft Computing |
ترجمه: ندارد | گزارشکار : دارد (توضیحات مربوط به شبیه سازی در 8 صفحه و به صورت WORD و PDF ارائه شده است؛ این توضیحات شامل توضیحات کدها می باشد) | شبیه سازی : دارد (فایل های شبیه سازی در متلب با فرمت .m) |
این مقاله در محیط متلب به صورت کامل شبیه سازی شده و در صورت خرید و دانلود مقاله شما به راحتی قادر خواهید بود از برنامه مربوطه استفاده نمایید. در صورت بروز هر گونه مشکل در نحوه ی اجرای برنامه سایت سیگمالند به مدت 24 ساعت بعد از خرید محصول، پشتیبانی آن را تا اجرای کامل برعهده دارد. همچنین این پروژه شبیه سازی دارای گزارش کار است.
مدل های رشد قابلیت اطمینان نرم افزار سنتی (SRGMs) بر اساس برخی مفروضات یا توزیع ها است و هیچ یک از این مدل های منحصر به فرد نمی توانند نتایج پیش بینی دقیق را در هر شرایطی تولید کنند. مدل های غیر پارامتری مانند مدل های مبتنی بر شبکه عصبی مصنوعی (ANN) می توانند قابلیت اطمینان نرم افزار را براساس داده هایبدون پیش فرض ارائه دهند.
در این مقاله ابتدا یک مدل ترکیبی وزن پویا (PFFNNDWCM) برای پیش بینی قابلیت اطمینان نرم افزاری بر اساس مدل شبکه عصبی قوی (FFNN) پیشنهاد شده است. چهار روش SRGM سنتی شناخته شده براساس وزن پویایی ارزیابی شده توسط الگوریتم یادگیری FFNN پیشنهاد شده ترکیب می شوند. بر اساس این معماری پیشنهادی FFNN، همچنین یک مدل ترکیبی با وزن پویا (PRNNDWCM) مبتنی بر شبکه عصبی مرکزی (RNN) قوی را برای پیش بینی قابلیت اطمینان نرم افزاری بیشتر قابل قبول پیشنهاد شده است. یک الگوریتم ژنتیک (GA) برای آموزش ANN ها پیشنهاد شده است.
پیش بینی مدل پیشنهادی با مدلهای پایه نرم افزاری موجود بر اساس مدل ANN براساس سه مجموعه داده های خرابی نرم افزار واقعی، مقایسه شده است. همچنین عملکرد مدل های پیشنهادی با مدل هایی که می توان با ترکیب سه یا دو از چهار SRGM توسعه داد، مقایسه شده است. مطالعات تطبیقی نشان می دهد که PFFNNDWCM و PRNNDWCM قابلیت نسبتا دقیق و قابلیت پیش بینی نسبت به دیگر مدل های مبتنی بر ANN را ارائه می دهند. توضیحات عددی و گرافیکی نشان می دهد که PRNNDWCM برای پیش بینی قابلیت اطمینان نرم افزار امیدوار کننده است؛ زیرا خطای پیش بینی و نصب آن بسیار کمتر از روش PFFNNDWCM است.
در ادامه بخشی نتایج شبیه سازی ها در نرم افزار متلب نشان داده شده است.
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.